Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/12/10.1063/1.4962907
1.
M. Vidler and J. Tennyson, J. Chem. Phys. 113, 9766 (2000).
http://dx.doi.org/10.1063/1.1321769
2.
R. C. Fortenberry, X. Huang, A. Yachmenev, W. Thiel, and T. J. Lee, Chem. Phys. Lett. 574, 1 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.03.078
3.
Q. Yu and J. M. Bowman, Mol. Phys. 113, 3964 (2015).
http://dx.doi.org/10.1080/00268976.2015.1085109
4.
H. Y. Mussa and J. Tennyson, J. Chem. Phys. 109, 10885 (1998).
http://dx.doi.org/10.1063/1.476519
5.
H. Y. Mussa and J. Tennyson, Chem. Phys. Lett. 366, 449 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01554-3
6.
N. F. Zobov, S. V. Shirin, L. Lodi, B. C. Silva, J. Tennyson, A. G. Császár, and O. L. Polyansky, Chem. Phys. Lett. 507, 48 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.03.052
7.
T. Szidarovszky and A. G. Csaszar, Mol. Phys. 111, 2131 (2013).
http://dx.doi.org/10.1080/00268976.2013.793831
8.
S. Ndengue, R. Dawes, X.-G. Wang, T. Carrington, Jr., Z. Sun, and H. Guo, J. Chem. Phys. 144, 074302 (2016).
http://dx.doi.org/10.1063/1.4941559
9.
The Editors, Phys. Rev. A 83, 040001 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.040001
10.
H.-K. Chung, B. J. Braams, K. Bartschat, A. G. Császár, G. W. F. Drake, T. Kirchner, V. Kokoouline, and J. Tennyson, J. Phys. D: Appl. Phys. 49, 363002 (2016).
http://dx.doi.org/10.1088/0022-3727/49/36/363002
11.
J. Tennyson, Comput. Phys. Rep. 4, 1 (1986).
http://dx.doi.org/10.1016/0167-7977(86)90005-5
12.
J. C. Light and T. Carrington, Adv. Chem. Phys. 114, 263 (2000).
http://dx.doi.org/10.1002/9780470141731.ch4
13.
J. R. Henderson, J. Tennyson, and B. T. Sutcliffe, J. Chem. Phys. 98, 7191 (1993).
http://dx.doi.org/10.1063/1.464711
14.
T. Carrington, Jr., Can. J. Phys. 93, 589 (2015).
http://dx.doi.org/10.1139/cjc-2014-0590
15.
A. G. Császár, C. Fabri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, and G. Czakó, Phys. Chem. Chem. Phys. 14, 1085 (2012).
http://dx.doi.org/10.1039/C1CP21830A
16.
M. Vainio and L. Halonen, Phys. Chem. Chem. Phys. 18, 4266 (2016).
http://dx.doi.org/10.1039/C5CP07052J
17.
P. Jensen, J. Mol. Spectrosc. 128, 478 (1988).
http://dx.doi.org/10.1016/0022-2852(88)90164-6
18.
O. L. Polyansky, P. Jensen, and J. Tennyson, J. Chem. Phys. 101, 7651 (1994).
http://dx.doi.org/10.1063/1.468258
19.
H. Partridge and D. W. Schwenke, J. Chem. Phys. 106, 4618 (1997).
http://dx.doi.org/10.1063/1.473987
20.
S. V. Shirin, O. L. Polyansky, N. F. Zobov, P. Barletta, and J. Tennyson, J. Chem. Phys. 118, 2124 (2003).
http://dx.doi.org/10.1063/1.1532001
21.
V. G. Tyuterev, S. A. Tashkun, and D. W. Schwenke, Chem. Phys. Lett. 348, 223 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01093-4
22.
X. Huang, R. S. Freedman, S. A. Tashkun, D. W. Schwenke, and T. J. Lee, J. Quant. Spectrosc. Radiat. Transfer 130, 134 (2013).
http://dx.doi.org/10.1016/j.jqsrt.2013.05.018
23.
A. G. Császár, G. Czako, T. Furtenbacher, J. Tennyson, V. Szalay, S. V. Shirin, N. F. Zobov, and O. L. Polyansky, J. Chem. Phys. 122, 214305 (2005).
http://dx.doi.org/10.1063/1.1924506
24.
G. Cazzoli, C. Puzzarini, and J. Gauss, Mol. Phys. 110, 2359 (2012).
http://dx.doi.org/10.1080/00268976.2012.680518
25.
L. A. Mueck, S. Thorwirth, and J. Gauss, J. Mol. Spectrosc. 311, 49 (2015).
http://dx.doi.org/10.1016/j.jms.2014.12.001
26.
S. Miller and J. Tennyson, J. Mol. Spectrosc. 128, 530 (1988).
http://dx.doi.org/10.1016/0022-2852(88)90168-3
27.
O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, Astrophys. J. 489, L205 (1997).
http://dx.doi.org/10.1086/316794
28.
M. Carleer, A. Jenouvrier, A.-C. Vandaele, P. F. Bernath, M. F. Mérienne, R. Colin, N. F. Zobov, O. L. Polyansky, J. Tennyson, and V. A. Savin, J. Chem. Phys. 111, 2444 (1999).
http://dx.doi.org/10.1063/1.479859
29.
I. N. Kozin and P. Jensen, J. Mol. Spectrosc. 163, 483 (1994).
http://dx.doi.org/10.1006/jmsp.1994.1041
30.
D. S. Underwood, S. N. Yurchenko, J. Tennyson, and P. Jensen, J. Chem. Phys. 140, 244316 (2014).
http://dx.doi.org/10.1063/1.4882865
31.
M. S. Child, T. Weston, and J. Tennyson, Mol. Phys. 96, 371 (1999).
http://dx.doi.org/10.1080/00268979909482971
32.
S. C. Farantos and J. Tennyson, J. Chem. Phys. 82, 800 (1985).
http://dx.doi.org/10.1063/1.448506
33.
A. Owens, S. N. Yurchenko, W. Thiel, and V. Špirko, Mon. Not. R. Astron. Soc. 450, 3191 (2015).
http://dx.doi.org/10.1093/mnras/stv869
34.
A. Owens, S. N. Yurchenko, O. L. Polyansky, R. I. Ovsyannikov, W. Thiel, and V. Špirko, Mon. Not. R. Astron. Soc. 454, 2292 (2015).
http://dx.doi.org/10.1093/mnras/stv2023
35.
J. M. L. Martin, J.-P. François, and R. Gijbels, J. Chem. Phys. 96, 7633 (1992).
http://dx.doi.org/10.1063/1.462364
36.
R. J. Barber, G. J. Harris, and J. Tennyson, J. Chem. Phys. 117, 11239 (2002).
http://dx.doi.org/10.1063/1.1521131
37.
L. Neale and J. Tennyson, Astrophys. J. 454, L169 (1995).
http://dx.doi.org/10.1086/309789
38.
C. Sousa-Silva, N. Hesketh, S. N. Yurchenko, C. Hill, and J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 142, 66 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2014.03.012
39.
A. Yachmenev, S. N. Yurchenko, I. Paidarova, P. Jensen, W. Thiel, and S. P. A. Sauer, J. Chem. Phys. 132, 114305 (2010).
http://dx.doi.org/10.1063/1.3359850
40.
J. T. Rayner, M. C. Cushing, and W. D. Vacca, Astrophys. J. Suppl. 185, 289 (2009).
http://dx.doi.org/10.1088/0067-0049/185/2/289
41.
J. Bailey and L. Kedziora-Chudczer, Mon. Not. R. Astron. Soc. 419, 1913 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2011.19845.x
42.
C. Wenger and J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer 59, 471 (1998).
http://dx.doi.org/10.1016/S0022-4073(97)00106-4
43.
S. N. Yurchenko, J. Tennyson, J. Bailey, M. D. J. Hollis, and G. Tinetti, Proc. Natl. Acad. Sci. U. S. A. 111, 9379 (2014).
http://dx.doi.org/10.1073/pnas.1324219111
44.
P. Botschwina, C. Stein, P. Sebald, B. Schroeder, and R. Oswald, Astrophys. J. 787, 72 (2014).
http://dx.doi.org/10.1088/0004-637X/787/1/72
45.
B. Schroeder, O. Weser, P. Sebald, and P. Botschwina, Mol. Phys. 113, 1914 (2015).
http://dx.doi.org/10.1080/00268976.2015.1023753
46.
C. Stein, O. Weser, B. Schroeder, and P. Botschwina, Mol. Phys. 113, 2169 (2015).
http://dx.doi.org/10.1080/00268976.2015.1017019
47.
M. C. McCarthy and J. Gauss, J. Phys. Chem. Lett. 7, 1895 (2016).
http://dx.doi.org/10.1021/acs.jpclett.6b00632
48.
U. G. Jørgensen, J. Almlöf, B. Gustafsson, M. Larsson, and P. Siegbahn, J. Chem. Phys. 83, 3034 (1985).
http://dx.doi.org/10.1063/1.449206
49.
F. Allard, P. H. Hauschildt, S. Miller, and J. Tennyson, Astrophys. J. 426, L39 (1994).
http://dx.doi.org/10.1086/187334
50.
R. B. Wattson and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 48, 763 (1992).
http://dx.doi.org/10.1016/0022-4073(92)90140-Y
51.
R. Warmbier, R. Schneider, A. R. Sharma, B. J. Braams, J. M. Bowman, and P. H. Hauschildt, Astron. Astrophys. 495, 655 (2009).
http://dx.doi.org/10.1051/0004-6361:200810983
52.
C. Sousa-Silva, A. F. Al-Refaie, J. Tennyson, and S. N. Yurchenko, Mon. Not. R. Astron. Soc. 446, 2337 (2015).
http://dx.doi.org/10.1093/mnras/stu2246
53.
A. F. Al-Refaie, S. N. Yurchenko, A. Yachmenev, and J. Tennyson, Mon. Not. R. Astron. Soc. 448, 1704 (2015).
http://dx.doi.org/10.1093/mnras/stv091
54.
D. S. Underwood, J. Tennyson, S. N. Yurchenko, X. Huang, D. W. Schwenke, T. J. Lee, S. Clausen, and A. Fateev, Mon. Not. R. Astron. Soc. 459, 3890 (2016).
http://dx.doi.org/10.1093/mnras/stw849
55.
M. Rey, A. V. Nikitin, Y. L. Babikov, and V. G. Tyuterev, J. Mol. Spectrosc. 327, 138 (2016).
http://dx.doi.org/10.1016/j.jms.2016.04.006
56.
X.-G. Wang and T. Carrington, Jr., J. Chem. Phys. 138, 104106 (2013).
http://dx.doi.org/10.1063/1.4793474
57.
S. N. Yurchenko and J. Tennyson, Mon. Not. R. Astron. Soc. 440, 1649 (2014).
http://dx.doi.org/10.1093/mnras/stu326
58.
M. Rey, A. V. Nikitin, and V. G. Tyuterev, Astrophys. J. 789, 2 (2014).
http://dx.doi.org/10.1088/0004-637X/789/1/2
59.
S. Miller, T. Stallard, H. Melin, and J. Tennyson, Faraday Discuss. 147, 283 (2010).
http://dx.doi.org/10.1039/c004152c
60.
J. Tennyson, K. Hulme, O. K. Naim, and S. N. Yurchenko, J. Phys. B: At., Mol. Opt. Phys. 49, 044002 (2016).
http://dx.doi.org/10.1088/0953-4075/49/4/044002
61.
A. Owens, E. Zak, K. L. Chubb, S. N. Yurchenko, J. Tennyson, and A. Yachmenev, “Simulating electric-field interactions with polar molecules using spectroscopic databases,” New J. Phys. (to be published).
62.
W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.473
63.
G. D. Dickenson, M. L. Niu, E. J. Salumbides, J. Komasa, K. S. E. Eikema, K. Pachucki, and W. Ubachs, Phys. Rev. Lett. 110, 193601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.193601
64.
M. Stanke, D. Kedziera, S. Bubin, M. Molski, and L. Adamowicz, J. Chem. Phys. 128, 114313 (2008).
http://dx.doi.org/10.1063/1.2834926
65.
K. Pachucki, Phys. Rev. A 82, 032509 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.032509
66.
K. Pachucki and J. Komasa, J. Chem. Phys. 141, 224103 (2014).
http://dx.doi.org/10.1063/1.4902981
67.
K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009).
http://dx.doi.org/10.1063/1.3114680
68.
J. Komasa, K. Piszczatowski, G. Lach, M. Przybytek, B. Jeziorski, and K. Pachucki, J Chem. Theory Comput. 7, 3105 (2011).
http://dx.doi.org/10.1021/ct200438t
69.
G. Drake, Can. J. Phys. 80, 1195 (2002).
http://dx.doi.org/10.1139/p02-111
70.
W. Ubachs, J. Bagdonaite, E. J. Salumbides, M. T. Murphy, and L. Kaper, Rev. Mod. Phys. 88, 021003 (2016).
http://dx.doi.org/10.1103/RevModPhys.88.021003
71.
J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, and K. Varga, Rev. Mod. Phys. 85, 693 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.693
72.
M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, and A. G. Császár, J. Chem. Phys. 136, 184303 (2012).
http://dx.doi.org/10.1063/1.4711756
73.
O. L. Polyansky and J. Tennyson, J. Chem. Phys. 110, 5056 (1999).
http://dx.doi.org/10.1063/1.478404
74.
M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.023002
75.
A. Petrignani, M. Berg, F. Grussie, A. Wolf, I. I. Mizus, O. L. Polyansky, J. Tennyson, N. F. Zobov, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 141, 241104 (2014).
http://dx.doi.org/10.1063/1.4904440
76.
O. L. Polyansky, A. Alijah, N. F. Zobov, I. I. Mizus, R. Ovsyannikov, J. Tennyson, T. Szidarovszky, and A. G. Császár, Philos. Trans. R. Soc., A 370, 5014 (2012).
http://dx.doi.org/10.1098/rsta.2012.0014
77.
L. Lodi, O. L. Polyansky, A. A. J. Tennyson, and N. F. Zobov, Phys. Rev. A 89, 032505 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.032505
78.
L. G. Diniz, J. R. Mohallem, A. Alijah, M. Pavanello, L. Adamowicz, O. L. Polyansky, and J. Tennyson, Phys. Rev. A 88, 032506 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.032506
79.
E. Matyus, T. Szidarovszky, and A. G. Csaszar, J. Chem. Phys. 141, 154111 (2014).
http://dx.doi.org/10.1063/1.4897566
80.
A. Alijah, J. Fremont, and V. G. Tyuterev, Phys. Rev. A 92, 012704 (2015).
http://dx.doi.org/10.1103/PhysRevA.92.012704
81.
A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, J. Mol. Spectrosc. 317, 71 (2015).
http://dx.doi.org/10.1016/j.jms.2015.09.004
82.
P. Jusko, C. Konietzko, S. Schlemmer, and O. Asvany, J. Mol. Spectrosc. 319, 55 (2016).
http://dx.doi.org/10.1016/j.jms.2015.12.002
83.
F. Kemp, C. E. Kirk, and I. R. McNab, Philos. Trans. R. Soc., A 358, 2403 (2000).
http://dx.doi.org/10.1098/rsta.2000.0656
84.
A. Carrington and I. R. McNab, Acc. Chem. Res. 22, 218 (1989).
http://dx.doi.org/10.1021/ar00162a004
85.
A. Carrington, I. R. McNab, and Y. D. West, J. Chem. Phys. 98, 1073 (1993).
http://dx.doi.org/10.1063/1.464331
86.
I. R. McNab, Adv. Chem. Phys. 89, 1 (1995).
87.
J. R. Henderson and J. Tennyson, Mol. Phys. 89, 953 (1996).
http://dx.doi.org/10.1080/00268979609482516
88.
J. Tennyson, M. A. Kostin, H. Y. Mussa, O. L. Polyansky, and R. Prosmiti, Philos. Trans. R. Soc., A 358, 2419 (2000).
http://dx.doi.org/10.1098/rsta.2000.0657
89.
L. Velilla, B. Lepetit, A. Aguado, J. A. Beswick, and M. Paniagua, J. Chem. Phys. 129, 084307 (2008).
http://dx.doi.org/10.1063/1.2973629
90.
X. C. Huang, A. B. McCoy, J. M. Bowman, L. M. Johnson, C. Savage, F. Dong, and D. J. Nesbitt, Science 311, 60 (2006).
http://dx.doi.org/10.1126/science.1121166
91.
O. Asvany, K. M. T. Yamada, S. Bruenken, A. Potapov, and S. Schlemmer, Science 347, 1346 (2015).
http://dx.doi.org/10.1126/science.aaa3304
92.
H. Schmiedt, S. Schlemmer, and P. Jensen, J. Chem. Phys. 143, 154302 (2015).
http://dx.doi.org/10.1063/1.4933001
93.
R. Wodraszka and U. Manthe, J. Phys. Chem. Lett. 6, 4229 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01869
94.
Y. Yamaguchi, J. F. Gaw, R. B. Remington, and H. F. Schaefer, J. Chem. Phys. 86, 5072 (1987).
http://dx.doi.org/10.1063/1.452650
95.
H. Muller and W. Kutzelnigg, Phys. Chem. Chem. Phys. 2, 2061 (2000).
http://dx.doi.org/10.1039/b001106l
96.
Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 224307 (2005).
http://dx.doi.org/10.1063/1.1927529
97.
A. Aguado, P. Barragan, R. Prosmiti, G. Delgado-Barrio, P. Villarreal, and O. Roncero, J. Chem. Phys. 133, 024306 (2010).
http://dx.doi.org/10.1063/1.3454658
98.
B. A. McGuire, Y. Wang, J. M. Bowman, and S. L. W. Weaver, J. Phys. Chem. Lett. 2, 1405 (2011).
http://dx.doi.org/10.1021/jz2005539
99.
A. Valdes, R. Prosmiti, and G. Delgado-Barrio, J. Chem. Phys. 136, 104302 (2012).
http://dx.doi.org/10.1063/1.3691828
100.
T. C. Cheng, L. Jiang, K. R. Asmis, Y. Wang, J. M. Bowman, A. M. Ricks, and M. A. Duncan, J. Phys. Chem. Lett. 3, 3160 (2012).
http://dx.doi.org/10.1021/jz301276f
101.
A. Valdes and R. Prosmiti, J. Phys. Chem. A 117, 9518 (2013).
http://dx.doi.org/10.1021/jp3121947
102.
H. Song, S.-Y. Lee, M. Yang, and Y. Lu, J. Chem. Phys. 138, 124309 (2013).
http://dx.doi.org/10.1063/1.4797464
103.
Z. Lin and A. B. McCoy, J. Phys. Chem. A 117, 11725 (2013).
http://dx.doi.org/10.1021/jp4014652
104.
J. Sarka, C. Fabri, T. Szidarovszky, A. G. Csaszar, Z. Lin, and A. B. McCoy, Mol. Phys. 113, 1873 (2015).
http://dx.doi.org/10.1080/00268976.2015.1020074
105.
J. Sarka and A. G. Csaszar, J. Chem. Phys. 144, 154309 (2016).
http://dx.doi.org/10.1063/1.4946808
106.
J. Tennyson, S. N. Yurchenko, A. F. Al-Refaie, E. J. Barton, K. L. Chubb, P. A. Coles, S. Diamantopoulou, M. N. Gorman, C. Hill, A. Z. Lam et al., J. Mol. Spectrosc. 327, 73 (2016).
http://dx.doi.org/10.1016/j.jms.2016.05.002
107.
J. Tennyson, C. Hill, and S. N. Yurchenko, AIP Conf. Proc. 1545, 186 (2013).
http://dx.doi.org/10.1063/1.4815853
108.
P. Pyykkö, K. G. Dyall, A. G. Császár, G. Tarczay, O. L. Polyansky, and J. Tennyson, Phys. Rev. A 63, 024502 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.024502
109.
A. G. Császár, W. D. Allen, and H. F. Schaefer III, J. Chem. Phys. 108, 9751 (1998).
http://dx.doi.org/10.1063/1.476449
110.
O. L. Polyansky, A. G. Császár, S. V. Shirin, N. F. Zobov, P. Barletta, J. Tennyson, D. W. Schwenke, and P. J. Knowles, Science 299, 539 (2003).
http://dx.doi.org/10.1126/science.1079558
111.
X. Huang, D. W. Schwenke, S. A. Tashkun, and T. J. Lee, J. Chem. Phys. 136, 124311 (2012).
http://dx.doi.org/10.1063/1.3697540
112.
A. Yachmenev, I. Polyak, and W. Thiel, J. Chem. Phys. 139, 204308 (2013).
http://dx.doi.org/10.1063/1.4832322
113.
A. Owens, S. N. Yurchenko, A. Yachmenev, J. Tennyson, and W. Thiel, J. Chem. Phys. 142, 244306 (2015).
http://dx.doi.org/10.1063/1.4922890
114.
O. V. Boyarkin, M. A. Koshelev, O. Aseev, P. Maksyutenko, T. R. Rizzo, N. F. Zobov, L. Lodi, J. Tennyson, and O. L. Polyansky, Chem. Phys. Lett. 568-569, 14 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.03.007
115.
A. Yachmenev, S. N. Yurchenko, P. Jensen, and W. Thiel, J. Chem. Phys. 134, 244307 (2011).
http://dx.doi.org/10.1063/1.3599927
116.
X. Huang, D. W. Schwenke, and T. J. Lee, J. Chem. Phys. 134, 044320 (2011).
http://dx.doi.org/10.1063/1.3541351
117.
S. N. Yurchenko, R. J. Barber, J. Tennyson, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 268, 123 (2011).
http://dx.doi.org/10.1016/j.jms.2011.04.005
118.
J. H. Schryber, O. L. Polyansky, P. Jensen, and J. Tennyson, J. Mol. Spectrosc. 185, 234 (1997).
http://dx.doi.org/10.1006/jmsp.1997.7407
119.
S. N. Yurchenko, R. J. Barber, and J. Tennyson, Mon. Not. R. Astron. Soc. 413, 1828 (2011).
http://dx.doi.org/10.1111/j.1365-2966.2011.18261.x
120.
A. E. Lynas-Gray, S. Miller, and J. Tennyson, J. Mol. Spectrosc. 169, 458 (1995).
http://dx.doi.org/10.1006/jmsp.1995.1038
121.
D. S. Underwood, S. N. Yurchenko, J. Tennyson, A. F. Al-Refaie, S. Clausen, and A. Fateev, Mon. Not. R. Astron. Soc. 462, 4300 (2016).
http://dx.doi.org/10.1093/mnras/stw1828
122.
D. W. Schwenke and H. Partridge, J. Chem. Phys. 113, 6592 (2000).
http://dx.doi.org/10.1063/1.1311392
123.
L. Lodi, R. N. Tolchenov, J. Tennyson, A. E. Lynas-Gray, S. V. Shirin, N. F. Zobov, O. L. Polyansky, A. G. Császár, J. van Stralen, and L. Visscher, J. Chem. Phys. 128, 044304 (2008).
http://dx.doi.org/10.1063/1.2817606
124.
L. Lodi, J. Tennyson, and O. L. Polyansky, J. Chem. Phys. 135, 034113 (2011).
http://dx.doi.org/10.1063/1.3604934
125.
J. Tennyson and S. N. Yurchenko, Mon. Not. R. Astron. Soc. 425, 21 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2012.21440.x
126.
X. Huang, R. R. Gamache, R. S. Freedman, D. W. Schwenke, and T. J. Lee, J. Quant. Spectrosc. Radiat. Transfer 147, 134 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2014.05.015
127.
X. Huang, D. W. Schwenke, and T. J. Lee, J. Mol. Spectrosc. 311, 19 (2016).
http://dx.doi.org/10.1016/j.jms.2015.01.010
128.
R. J. Hargreaves, G. Li, and P. F. Bernath, J. Quant. Spectrosc. Radiat. Transfer 113, 670 (2012).
http://dx.doi.org/10.1016/j.jqsrt.2012.02.033
129.
R. J. Hargreaves, P. F. Bernath, J. Bailey, and M. Dulick, Astrophys. J. 813, 12 (2015).
http://dx.doi.org/10.1088/0004-637X/813/1/12
130.
L. Lodi and J. Tennyson, J. Phys. B: At., Mol. Opt. Phys. 43, 133001 (2010).
http://dx.doi.org/10.1088/0953-4075/43/13/133001
131.
J. Tennyson, WIREs Comput. Mol. Sci. 2, 698 (2012).
http://dx.doi.org/10.1002/wcms.94
132.
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013).
http://dx.doi.org/10.1016/j.jqsrt.2013.07.002
133.
A. F. Al-Refaie, O. L. Polyansky, R. I. Ovsyannikov, J. Tennyson, and S. N. Yurchenko, Mon. Not. R. Astron. Soc. 461, 1012 (2016).
http://dx.doi.org/10.1093/mnras/stw1295
134.
P. Małyszek and J. Koput, J. Comput. Chem. 34, 337 (2013).
http://dx.doi.org/10.1002/jcc.23137
135.
O. L. Polyansky, I. N. Kozin, P. Maĺyszek, J. Koput, J. Tennyson, and S. N. Yurchenko, J. Phys. Chem. A 117, 7367 (2013).
http://dx.doi.org/10.1021/jp401216g
136.
A. F. Al-Refaie, R. I. Ovsyannikov, O. L. Polyansky, S. N. Yurchenko, and J. Tennyson, J. Mol. Spectrosc. 318, 84 (2015).
http://dx.doi.org/10.1016/j.jms.2015.10.004
137.
S. Carter, P. Rosmus, N. C. Handy, S. Miller, J. Tennyson, and B. T. Sutcliffe, Comput. Phys. Commun. 55, 71 (1989).
http://dx.doi.org/10.1016/0010-4655(89)90064-7
138.
J. Tennyson and S. N. Yurchenko, “The ExoMol project: Software for computing large molecular line lists,” Int. J. Quantum. Chem. (published online).
http://dx.doi.org/10.1002/qua.25190
139.
A. F. Al-Refaie, J. Tennyson, and S. N. Yurchenko, “GPU Accelerated INtensities MPI (GAIN-MPI): A new method of computing Einstein-A coefficients,” Comput. Phys. Commun. (submitted).
140.
A. A. A. Azzam, S. N. Yurchenko, J. Tennyson, and O. V. Naumenko, Mon. Not. R. Astron. Soc. 460, 4063 (2016).
http://dx.doi.org/10.1093/mnras/stw1133
141.
A. A. A. Azzam, L. Lodi, S. N. Yurchenko, and J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 161, 41 (2015).
http://dx.doi.org/10.1016/j.jqsrt.2015.03.029
142.
L. Lodi, S. N. Yurchenko, and J. Tennyson, Mol. Phys. 113, 1559 (2015).
http://dx.doi.org/10.1080/00268976.2015.1029996
143.
J. Tennyson, L. Lodi, L. K. McKemmish, and S. N. Yurchenko, J. Phys. B: At., Mol. Opt. Phys. 49, 102001 (2016).
http://dx.doi.org/10.1088/0953-4075/49/10/102001
144.
L. K. McKemmish, S. N. Yurchenko, and J. Tennyson, “Choice of orbitals in multi-reference configuration interaction calculations: Spectroscopy of VO as an example,” Mol. Phys. (to be published).
145.
D. Crisp, R. M. Atlas, F. M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. Jacob et al., Adv. Space Res. 34, 700 (2004).
http://dx.doi.org/10.1016/j.asr.2003.08.062
146.
L. Kao, T. Oka, S. Miller, and J. Tennyson, Astrophys. J. Suppl. 77, 317 (1991).
http://dx.doi.org/10.1086/191606
147.
O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, Phys. Rev. Lett. 114, 243001 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.243001
148.
L. Lodi and J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 113, 850 (2012).
http://dx.doi.org/10.1016/j.jqsrt.2012.02.023
149.
E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, S. A. Tashkun, and V. I. Perevalov, J. Quant. Spectrosc. Radiat. Transfer 177, 31 (2016).
http://dx.doi.org/10.1016/j.jqsrt.2015.12.022
150.
E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, N. F. Zobov, S. A. Tashkun, and V. I. Perevalov, “Room temperature line lists for CO2 symmetric isotopologues with ab initio computed intensities,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
151.
E. S. Medvedev, V. V. Meshkov, A. V. Stolyarov, and I. E. Gordon, J. Chem. Phys. 143, 154301 (2015).
http://dx.doi.org/10.1063/1.4933136
152.
R. J. Barber, S. Miller, N. Dello Russo, M. J. Mumma, J. Tennyson, and P. Guio, Mon. Not. R. Astron. Soc. 398, 1593 (2009).
http://dx.doi.org/10.1111/j.1365-2966.2009.15239.x
153.
P. Dupre, T. Germain, N. F. Zobov, R. N. Tolchenov, and J. Tennyson, J. Chem. Phys. 123, 154307 (2005).
http://dx.doi.org/10.1063/1.2055247
154.
E. M. Wilson, J. C. Wenger, and D. S. Venables, J. Quant. Spectrosc. Radiat. Transfer 170, 194 (2016).
http://dx.doi.org/10.1016/j.jqsrt.2015.11.015
155.
J. Lampel, D. Pöhler, O. L. Polyansky, A. A. Kyuberis, N. F. Zobov, J. Tennyson, L. Lodi, U. Frieß, Y. Wang, S. Beirle et al., “Detection of water vapour absorption around 363 nm in measured atmospheric absorption spectra and its effect on DOAS evaluations,” Atmos. Chem. Phys. (published online).
http://dx.doi.org/10.5194/acp-2016-388
156.
R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, Mon. Not. R. Astron. Soc. 368, 1087 (2006).
http://dx.doi.org/10.1111/j.1365-2966.2006.10184.x
157.
O. L. Polyansky, A. A. Kyuberis, L. Lodi, J. Tennyson, R. I. Ovsyannikov, N. Zobov, and S. N. Yurchenko, “ExoMol Molecular linelists: XXI Calculation of complete water linelist up to dissociation,” Mon. Not. R. Astron. Soc. (to be published).
158.
J. Tennyson, J. Mol. Spectrosc. 298, 1 (2014).
http://dx.doi.org/10.1016/j.jms.2014.01.012
159.
A. Callegari, P. Theule, R. N. Tolchenov, N. F. Zobov, O. L. Polyansky, J. Tennyson, J. S. Muenter, and T. R. Rizzo, Science 297, 993 (2002).
http://dx.doi.org/10.1126/science.1073731
160.
P. Maksyutenko, N. F. Zobov, S. V. Shirin, O. L. Polyansky, J. S. Muenter, T. R. Rizzo, and O. V. Boyarkin, J. Chem. Phys. 126, 241101 (2007).
http://dx.doi.org/10.1063/1.2748751
161.
M. Grechko, P. Maksyutenko, N. F. Zobov, S. V. Shirin, O. L. Polyansky, T. R. Rizzo, and O. V. Boyarkin, J. Phys. Chem. A 112, 10539 (2008).
http://dx.doi.org/10.1021/jp805849q
162.
M. Grechko, O. V. Boyarkin, T. R. Rizzo, P. Maksyutenko, N. F. Zobov, S. Shirin, L. Lodi, J. Tennyson, A. G. Császár, and O. L. Polyansky, J. Chem. Phys. 131, 221105 (2009).
http://dx.doi.org/10.1063/1.3273207
163.
M. Grechko, O. Aseev, T. R. Rizzo, N. F. Zobov, L. Lodi, J. Tennyson, O. L. Polyansky, and O. V. Boyarkin, J. Chem. Phys. 136, 244308 (2012).
http://dx.doi.org/10.1063/1.4730295
164.
M. Grechko, P. Maksyutenko, T. R. Rizzo, and O. V. Boyarkin, J. Chem. Phys. 133, 081103 (2010).
http://dx.doi.org/10.1063/1.3472312
165.
P. Maksyutenko, T. R. Rizzo, and O. V. Boyarkin, J. Chem. Phys. 125, 181101 (2006).
http://dx.doi.org/10.1063/1.2387163
166.
A. G. Császár, E. Mátyus, L. Lodi, N. F. Zobov, S. V. Shirin, O. L. Polyansky, and J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 1043 (2010).
http://dx.doi.org/10.1016/j.jqsrt.2010.02.009
167.
O. L. Polyansky, N. F. Zobov, I. I. Mizus, L. Lodi, S. N. Yurchenko, J. Tennyson, A. G. Császár, and O. V. Boyarkin, Philos. Trans. R. Soc., A 370, 2728 (2012).
http://dx.doi.org/10.1098/rsta.2011.0259
168.
A. J. Dobbyn and P. J. Knowles, Mol. Phys. 91, 1107 (1997).
http://dx.doi.org/10.1080/002689797170842
169.
J. Tennyson, L. K. McKemmish, and T. Rivlin, “Low-temperature chemistry using the R-matrix method,” Faraday Discuss. (in press).
http://dx.doi.org/10.1039/c6fd00110f
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/12/10.1063/1.4962907
Loading
/content/aip/journal/jcp/145/12/10.1063/1.4962907
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/12/10.1063/1.4962907
2016-09-22
2016-12-03

Abstract

In what has been described as the fourth age of quantum chemistry, variational nuclear motion programs are now routinely being used to obtain the vibration-rotation levels and corresponding wavefunctions of small molecules to the sort of high accuracy demanded by comparison with spectroscopy. In this perspective, I will discuss the current state-of-the-art which, for example, shows that these calculations are increasingly competitive with measurements or, indeed, replacing them and thus becoming the primary source of data on key processes. To achieve this accuracy requires consideration of small effects, routinely ignored in standard calculations, such as those due to quantum electrodynamics. Variational calculations are being used to generate huge lists of transitions which provide the input for models of radiative transport through hot atmospheres and to fill in or even replace measured transition intensities. Future prospects such as the study of molecular states near dissociation, which can provide a link with low-energy chemical reactions, are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/12/1.4962907.html;jsessionid=jOYnRnLkkML1WCFw-cheWZa3.x-aip-live-02?itemId=/content/aip/journal/jcp/145/12/10.1063/1.4962907&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/12/10.1063/1.4962907&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/12/10.1063/1.4962907'
Right1,Right2,Right3,