Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. J. Orlando, G. S. Tyndall, and T. J. Wallington, Chem. Rev. 103, 4657 (2003).
P. Devolder and J. Photochem, Photobiol., A 157, 137 (2003).
R. Atkinson, Atmos. Environ. 41, 8468 (2007).
C. C. Carter, J. R. Atwell, S. Gopalakrishnan, and T. A. Miller, J. Phys. Chem. A 104, 9165 (2000).
H. J. Curran, Int. J. Chem. Kinet. 38, 250 (2006).
H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, Combust. Flame 114, 149 (1998).
A. C. Davis and J. S. Francisco, J. Phys. Chem. A 118, 10982 (2014).
M. L. Weichman, J. B. Kim, and D. M. Neumark, J. Phys. Chem. A 119, 6140 (2015).
P. Neeb, F. Sauer, O. Horie, and G. K. Moortgat, Atmos. Environ. 31, 1417 (1997).
L. Vereecken and J. S. Francisco, Chem. Soc. Rev. 41, 6259 (2012).
W. Eisfeld and J. S. Francisco, J. Chem. Phys. 131, 134313 (2009).
S. Bauerle and G. K. Moortgat, Chem. Phys. Lett. 309, 43 (1999).
J. S. Francisco and W. Eisfeld, J. Phys. Chem. A 113, 7593 (2009).
C. Barrientos, P. Redondo, H. Martinez, and A. Largo, Astrophys. J. 784, 132 (2014).
F. Duvernay, G. Danger, P. Theule, T. Chiavassa, and A. Rimola, Astrophys. J. 791, 75 (2014).
B. M. Hays and S. L. W. Weaver, J. Phys. Chem. A 117, 7142 (2013).
D. R. Kent, S. L. Widicus, G. A. Blake, and W. A. Goddard, J. Chem. Phys. 119, 5117 (2003).
F. Duvernay, A. Rimola, P. Theule, G. Danger, T. Sanchez, and T. Chiavassa, Phys. Chem. Chem. Phys. 16, 24200 (2014).
M. Baker and W. Gabryelski, Int. J. Mass Spectrom. 262, 128 (2007).
A. Simakov, G. B. S. Miller, A. J. C. Bunkan, M. R. Hoffmann, and E. Uggerud, Phys. Chem. Chem. Phys. 15, 16615 (2013).
Q. Cao, S. Berski, Z. Latajka, M. Rasanen, and L. Khriachtchev, Phys. Chem. Chem. Phys. 16, 5993 (2014).
T. M. Ramond, G. E. Davico, R. L. Schwartz, and W. C. Lineberger, J. Chem. Phys. 112, 1158 (2000).
J. J. Dillon and D. R. Yarkony, J. Chem. Phys. 131, 134303 (2009).
J. J. Dillon and D. R. Yarkony, J. Chem. Phys. 130, 154312 (2009).
D. M. Neumark, J. Phys. Chem. A 112, 13287 (2008).
J. Dillon and D. R. Yarkony, J. Chem. Phys. 137, 154315 (2012).
J. Jin, I. Sioutis, G. Tarczay, S. Gopalakrishnan, A. Bezant, and T. A. Miller, J. Chem. Phys. 121, 11780 (2004).
G. B. Ellison, P. C. Engelking, and W. C. Lineberger, J. Phys. Chem. 86, 4873 (1982).
L. Sheps, E. M. Miller, and W. C. Lineberger, J. Chem. Phys. 131, 064304 (2009).
Y. J. Lu, J. H. Lehman, and W. C. Lineberger, J. Chem. Phys. 142, 044201 (2015).
P. Ho, D. J. Bamford, R. J. Buss, Y. T. Lee, and C. B. Moore, J. Chem. Phys. 76, 3630 (1982).
R. Spence and W. Wild, J. Chem. Soc. 1, 506 (1935).
V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
B. Dick, Phys. Chem. Chem. Phys. 16, 570 (2014).
C. Blondel, W. Chaibi, C. Delsart, C. Drag, F. Goldfarb, and S. Kroger, Eur. Phys. J. D 33, 335 (2005).
H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).
J. R. Smith, J. B. Kim, and W. C. Lineberger, Phys. Rev. A 55, 2036 (1997).
J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968).
A. Sanov, Annu. Rev. Phys. Chem. 65, 341 (2014).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, USA, 2009.
K. M. Ervin, T. M. Ramond, G. E. Davico, R. L. Schwartz, S. M. Casey, and W. C. Lineberger, J. Phys. Chem. A 105, 10822 (2001).
K. M. Ervin, J. Ho, and W. C. Lineberger, J. Phys. Chem. 92, 5405 (1988).
T. E. Sharp and H. M. Rosenstock, J. Chem. Phys. 41, 3453 (1964).
K. M. Vogelhuber, S. W. Wren, A. B. McCoy, K. M. Ervin, and W. C. Lineberger, J. Chem. Phys. 134, 184306 (2011).
J. H. Frederick and C. Woywod, J. Chem. Phys. 111, 7255 (1999).
Y. C. Zhao, B. X. Wang, H. Y. Li, and L. Wang, J. Mol. Struct.: THEOCHEM 818, 155 (2007).
S. J. Blanksby, T. M. Ramond, G. E. Davico, M. R. Nimlos, S. Kato, V. M. Bierbaum, W. C. Lineberger, G. B. Ellison, and M. Okumura, J. Am. Chem. Soc. 123, 9585 (2001).
D. J. Goebbert, K. Pichugin, and A. Sanov, J. Chem. Phys. 131, 164308 (2009).
P. C. Engelking, J. Phys. Chem. 90, 4544 (1986).
E. P. Wigner, Phys. Rev. 73, 1002 (1948).
W. C. Lineberger and B. W. Woodward, Phys. Rev. Lett. 25, 424 (1970).
U. D. Jentschura, S. Kotochigova, E. O. LeBigot, P. J. Mohr, and B. N. Taylor, The Energy Levels of Hydrogen and Deuterium (version 2.1), National Institute of Standards and Technology, Gaithersburg, MD, 2016, available online at
C. K. Huang, Z. F. Xu, M. Nakajima, H. M. T. Nguyen, M. C. Lin, S. Tsuchiya, and Y. P. Lee, J. Chem. Phys. 137, 164307 (2012).

Data & Media loading...


Article metrics loading...



We report the negative ion photoelectron spectroscopy of the hydroxymethoxide anion, HC(OH)O. The photoelectron spectra show that 3.49 eV photodetachment produces two distinct electronic states of the neutral hydroxymethoxy radical (HC(OH)O). The HC(OH)O ground state ( 2 ) photoelectron spectrum exhibits a vibrational progression consisting primarily of the OCO symmetric and asymmetric stretches, the OCO bend, as well as combination bands involving these modes with other, lower frequency modes. A high-resolution photoelectron spectrum aids in the assignment of several vibrational frequencies of the neutral HC(OH)O radical, including an experimental determination of the HC(OH)O overtone of the H–OCO torsional vibration as 220(10) cm−1. The electron affinity of HC(OH)O is determined to be 2.220(2) eV. The low-lying 2 excited state is also observed, with a spectrum that peaks ∼0.8 eV above the 2 state origin. The 2 state photoelectron spectrum is a broad, partially resolved band. Quantum chemical calculations and photoelectron simulations aid in the interpretation of the photoelectron spectra. In addition, the gas phase acidity of methanediol is calculated to be 366(2) kcal mol−1, which results in an OH bond dissociation energy, D(HC(OH)O–H), of 104(2) kcal mol−1, using the experimentally determined electron affinity of the hydroxymethoxy radical.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd