Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K.-M. Ho, A. A. Shvatsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold, “Structures of medium sized silicon clusters,” Nature 392, 582-585 (1998).
C. Xu, T. R. Taylor, G. R. Burton, and D. M. Neumark, “Vibrationally resolved photoelectron spectroscopy of silicon cluster anions Sin (n = 3–7),” J. Chem. Phys. 108, 1395 (1998).
M. F. Jarrold and J. E. Bower, “Collision-induced dissociation of silicon cluster ions,” J. Phys. Chem. 92, 5702-5705 (1988).
M. Haertelt, J. T. Lyon, P. Claes, J. de Haeck, P. Lievens, and A. Fielicke, “Gas-phase structures of neutral silicon clusters,” J. Chem. Phys. 136, 064301 (2012).
A. Fielicke, J. T. Lyon, M. Haertelt, G. Meijer, P. Claes, J. de Haeck, and P. Lievens, “Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization,” J. Chem. Phys. 131, 171105 (2009).
J. T. Lyon, P. Gruene, A. Fielicke, G. Meijer, E. Janssens, P. Claes, and P. Lievens, “The structures of silicon cluster cations in the gas phase,” J. Am. Chem. Soc. 131, 1115-1121 (2009).
M. Vogel, C. Kasigkeit, K. Hirsch, A. Langenberg, J. Ritttman, V. Zamudio Bayer, A. Kulesza, R. Mitric, T. Moller, and B. V. Issendroff, “2p core level binding energies of size-selected free silicon clusters: Chemical shifts and cluster structure,” Phys. Rev. B 85, 195454 (2012).
U. Rothilisberger, W. Andreoni, and M. Parrinello, “Structures of nanoscale silicon clusters,” Phys. Rev. Lett. 72, 665 (1994).
A. Tekin and B. Harkte, “Global geometry optimization of small silicon clusters with empirical potentials and at the DFT level,” Phys. Chem. Chem. Phys 6, 503-509 (2004).
S. Yoo and X. C. Zeng, “Motif transition in growth patterns of small to medium sized silicon clusters,” Angew. Chem., Int. Ed. 44, 1491-1494 (2005).
D. Scheschkewitz, “A molecular silicon cluster with a “Naked” vertex atom,” Angew. Chem., Int. Ed. 44, 2954-2956 (2005).
S. Yoo and X. C. Zeng, “Structures and relative stability of medium sized. IV. Motif based low lying clusters Si21-Si30,” J. Chem. Phys. 124, 054304 (2006).
S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng, “Endohedral silicon fullerenes SiN (27 < N < 39),” J. Am. Chem. Soc. 126, 13845-13849 (2004).
B. F. P. McVey and R. D. Tilley, “Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals,” Acc. Chem. Res. 47, 3045-3051 (2014).
S. Krishnamurty, K. Joshi, D. G. Kanhere, and S. A. Blundell, “Finite-temperature behavior of small silicon and tin clusters: An ab initio molecular dynamics study,” Phys. Rev. B 73, 045419 (2006).
M. Rosemeyer, J. A. Becker, and R. Schafer, “Temperature-dependence of silicon cluster isomerisation,” Z. Phys. Chem. 216, 857-868 (2002).
P. Ferrari, E. Janssens, P. Lievens, and K. Hansen, “Thermal radiation and fragmentation pathways of photo-excited silicon clusters,” J. Chem. Phys. 143, 224313 (2015).
K. Raghavachari, “Fragmentation of small silicon clusters,” Chem. Phys. Lett. 143, 428-434 (1988).
A. Terasaki, H. Yamaguchi, H. Yasumatsu, and T. Kondow, “Fragmentation dynamics of silicon cluster anions in collision with a silicon surface: Contrast to aluminum cluster anions,” Chem. Phys. Lett. 262, 269-273 (1996).
S. Zooriasatein, K. Joshi, and D. G. Kanhere, “Dopant-induced stabilization of silicon clusters at finite temperature,” Phys. Rev. B 75, 045117 (2007).
J. Lee, W. Zhou, S. J. Pennycook, J.-C. Idrobo, and S. T. Pantelides, “Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore,” Nat. Commun. 4, 1650 (2013).
P. W. Merrill, “Note on the spectrum of UV aurigae,” Publ. Astron. Soc. Pac. 38, 175-176 (1926).
R. F. Sanford, “Two bands in spectra of class N,” Publ. Astron. Soc. Pac. 38, 177-179 (1926).
N. X. Truong, M. Savoca, D. J. Harding, A. Fielicke, and O. Dopfer, “Vibrational Spectra and Structures of SinC clusters (n = 3–8),” Phys. Chem. Chem. Phys. 17, 18961-18970 (2015).
M. Savoca, A. Lagutschenkov, J. Langer, D. J. Harding, A. Fielicke, and O. Dopfer, “Vibrational spectra and structures of neutral SimCn clusters (m + n = 6): Sequential doping of silicon clusters with carbon atoms,” J. Phys. Chem. A 117, 1158-1163 (2013).
N. X. Truong, M. Savoca, D. J. Harding, A. Fielicke, and O. Dopfer, “Vibrational spectra and structures of neutral Si6X clusters (X = Be, B, C, N, O),” Phys. Chem. Chem. Phys. 16, 22364-22372 (2014).
L. A. Bloomfield, M. E. Geusicc, R. R. Freeman, and W. L. Brown, “Negative and positive cluster ions of carbon and silicon,” Chem. Phys. Lett. 121, 33-37 (1985).
J. L. Fye and M. F. Jarrold, “Structures of silicon-doped carbon structures,” J. Phys. Chem. A 101, 1836-1840 (1997).
A. Nakajama, T. Taguna, K. Nakao, M. Gomei, R. Kishi, S. Iwata, and K. Kaya, “Photoelectron spectroscopy of silicon-carbon cluster anions (SinCm),” J. Chem. Phys. 103, 2050 (1995).
X. F. Duan, J. Wei, L. W. Burggaraf, and D. Weeks, “Mapping ground-state properties of silicon carbide molecular clusters using quantum mechanical calculations: SimCn and SimCn,” Comput. Mater. Sci. 47, 630-644 (2010).
X. F. Duan, L. W. Burggaraf, and L. Huang, “Searching for stable SinCn clusters: Combination of stochastic potential surface search and pseudopotential plane-wave car-Parinello simulated annealing simulations,” Molecules 18, 8591-8606 (2013).
S. L. Shi, S. J. Xu, X. J. Want, and G. H. Chen, “Theoretical absorption spectra of silicon carbide nanocrystals,” Thin Solid Films 495, 404-406 (2006).
M. R. Momeni and F. Shakib, “Stable C20−nSin heterofullerenes (n ≤ 8): A DFT approach,” Chem. Phys. Lett. 492, 137-141 (2010).
M. Huda and A. Ray, “Evolution of SiC nanocluster from carbon fullerene: A density functional theoretic study,” Chem. Phys. Lett. 457, 124-129 (2008).
R. Scipioni, M. Matsubara, E. Ruiz, C. Massobrio, and S. Boero, “Thermal behavior of Si-doped fullerenes vs their structural stability at T = 0K: A density functional study,” Chem. Phys. Lett. 510, 14-17 (2011).
R. Pochet, L. Genovese, D. Caliste, I. Rousseau, S. Goedecker, and T. Deutsch, “First-principles prediction of stable SiC cage structures and their synthesis pathways,” Phys. Rev. B 82, 035431 (2010).
N. J. Reilly, P. B. Changala, J. H. Baraban, D. L. Kokkin, J. F. Stanton, and M. C. McCarthy, “The ground electronic state of Si2C: Rovibrational level structure, quantum monodromy, and astrophysical implications,” J. Chem. Phys. 142, 231101 (2015).
X. F. Duan and L. W. Burggraf, “Theoretical investigation of stabilities and optical properties of Si12C12 clusters,” J. Chem. Phys. 142, 034303 (2015).
Y.-Z. Lan, H.-L. Kang, and T. Niu, “Comprehensive understanding of size-, shape-, and composition-dependent polarizabilities of SimCn (m, n = 14) clusters,” Int. J. Quantum Chem. 113, 949-958 (2013).
B. Song, Y. Yong, J. Hou, and P. He, “Density functional study of SinCn (n=10-15) clusters,” Eur. Phys. J. D 59, 399-406 (2010).
F. A. Reboredo, L. Pizzagalli, and G. Galli, “Computational engineering of the stability and optical gaps of SiC quantum dots,” Nano Lett. 6, 801-804 (2004).
M. Yu, C. S. Jayanthi, and S. Y. Wu, “Is there a stable bucky-diamond structure for SiC clusters?,” e-print arXiv:1108.4839.
M. A. Nazrulla, K. Joshi, S. Isreal, and S. Krishnamurty, “Structure and stability of a silicon cluster on sequential doping with carbon atoms,” Physica E 76, 173-180 (2016).
X. Zhu and C. Zeng, “Structures and stabilities of small silicon clusters: Ab initio molecular orbital calculations of Si7–Si11,” J. Chem. Phys. 118, 3558-3570 (2003).
N. X. Truong, M. Haertell, B. K. A. Jaeger, S. Gewinner, W. Scholkopf, A. Fielicke, and O. Dopfer, “Characterterization of neutral boron-silicon clusters using infrared spectroscopy: The case of Si6B,” Int. J. Mass Spectrom. 395, 1-6 (2016).
X. Huang, S.-J. Lu, X. Liang, Y. Su, L. Sai, Z.-G. Zhang, J. Zhao, H.-G. Xu, and W. Zheng, “Structures and electronic properties of V3Sin (n = 3–14) clusters: A combined ab initio and experimental study,” J. Phys. Chem. C 119, 10987-10994 (2014).
X. Li, P. Claes, M. Haertelt, P. Livens, E. Janssens, and A. Fielicke, “Structural determination of niobium-doped silicon clusters by far-infrared spectroscopy and theory,” Phys. Chem. Chem. Phys. 18, 6291-6300 (2016).
A. M. Koster, G. Geudtner, A. Alvarez-Ibarra, P. Calaminici, M. E. Casida, J. Carmona-Espindola, V. Dominguez, R. F-Moreno, G. U. Gamboa, A. Goursot, T. Heine, A. Ipatov, A. de la Lande, F. Janetzko, J. M. Campo, D. Mejia-Rodriguez, J. Reveles, J. Vasquez-Perez, A. Vela, B. Zuniga-Gutierrez, and D. R. Salahub, deMon2k, Version4,deMon Developers, 2015.
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, “Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation,” Can. J. Phys. 70, 560-571 (1992).
P. Calaminici, V.-D. D-Soria, R. F-Moreno, G. U. G-Martinez, G. Geudtner, A. Goursot, D. R. Salahub, and A. M. Koster, “Auxiliary density functional theory: From molecules to nanostructures,” in Handbook of Computational Chemistry, edited by J. Leszczynski (Springer Science, 2012).
S. Nose, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys. 81, 511-519 (1984).
W. G. Hoover, “Canonical dynamics: Equilibrium phase space distributions,” Phys. Rev. A 31, 1695 (1985).
X. Fan, Z. Peng, J. Wang, R. Ye, H. Zhou, and X. Guo, “Carbon-based composite as an efficient and stable metal-free electrocatalyst,” Adv. Funct. Mater. 26, 3621 (2016).

Data & Media loading...


Article metrics loading...



Silicon clusters with 3-50 atoms undergo isomerization/reversible dynamics or structural deformation at significantly lower temperatures of 350 K–500 K. Through Born Oppenheimer Molecular Dynamical (BOMD) simulations, the current study demonstrates that carbon alloying enhances the thermal stability of a silicon cluster. The study is carried out on a Si cluster which has been recently reported to undergo reversible dynamical movements using aberration-corrected transmission electron microscopy. Present BOMD simulations validate the experimentally observed reversible atomic displacements (reversible dynamical movements) at finite temperatures which are seen to persist nearly up to 2000 K. Carbon alloying of Si is seen to stretch the threshold of reversible dynamics from 200 K to 600 K depending upon the alloying concentration of carbon in the cluster.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd