Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/12/10.1063/1.4963340
1.
V. Munoz, P. A. Thompson, J. Hofrichter, and W. A. Eaton, Nature 390, 196 (1997).
http://dx.doi.org/10.1038/36626
2.
J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins: Struct., Funct., Bioinf. 21, 167 (1995).
http://dx.doi.org/10.1002/prot.340210302
3.
C.-J. Tsai, S. Kumar, B. Ma, and R. Nussinov, Protein Sci. 8, 1181 (1999).
http://dx.doi.org/10.1110/ps.8.6.1181
4.
B. A. Shoemaker, J. J. Portman, and P. G. Wolynes, Proc. Natl. Acad. Sci. U. S. A. 97, 8868 (2000).
http://dx.doi.org/10.1073/pnas.160259697
5.
A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 99, 12562 (2002).
http://dx.doi.org/10.1073/pnas.202427399
6.
J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw, Curr. Opin. Struct. Biol. 19, 120 (2009).
http://dx.doi.org/10.1016/j.sbi.2009.03.004
7.
D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Willy, Science 330, 341 (2010).
http://dx.doi.org/10.1126/science.1187409
8.
A. E. García and J. N. Onuchic, Proc. Natl. Acad. Sci. U. S. A. 100, 13898 (2003).
http://dx.doi.org/10.1073/pnas.2335541100
9.
X. Daura, W. F. van Gunsteren, and A. E. Mark, Proteins: Struct., Funct., Bioinf. 34, 269 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0134(19990215)34:3<269::AID-PROT1>3.0.CO;2-3
10.
T. Lazaridis and M. Karplus, Science 278, 1928 (1997).
http://dx.doi.org/10.1126/science.278.5345.1928
11.
K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, Science 334, 517 (2011).
http://dx.doi.org/10.1126/science.1208351
12.
F. Palazzesi, M. K. Prakash, M. Bonomi, and A. Barducci, J. Chem. Theory Comput. 11, 2 (2014).
http://dx.doi.org/10.1021/ct500718s
13.
R. B. Best, W. Zheng, and J. Mittal, J. Chem. Theory Comput. 10, 5113 (2014).
http://dx.doi.org/10.1021/ct500569b
14.
K. A. Beauchamp, Y.-S. Lin, R. Das, and V. S. Pande, J. Chem. Theory Comput. 8, 1409 (2012).
http://dx.doi.org/10.1021/ct2007814
15.
J. Henriques, C. Cragnell, and M. Skep, J. Chem. Theory Comput. 11, 3420 (2015).
http://dx.doi.org/10.1021/ct501178z
16.
J. A. Drake and B. M. Pettitt, J. Comput. Chem. 36, 1275 (2015).
http://dx.doi.org/10.1002/jcc.23934
17.
S. Piana, K. Lindorff-Larsen, and D. E. Shaw, Biophys. J. 100, L47 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.03.051
18.
P. S. Nerenberg and T. Head-Gordon, J. Chem. Theory Comput. 7, 1220 (2011).
http://dx.doi.org/10.1021/ct2000183
19.
K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror, and D. E. Shaw, PloS One 7, e32131 (2012).
http://dx.doi.org/10.1371/journal.pone.0032131
20.
S. Piana, A. G. Donchev, P. Robustelli, and D. E. Shaw, J. Phys. Chem. B 119, 5113 (2015).
http://dx.doi.org/10.1021/jp508971m
21.
F. Martn-Garca, E. Papaleo, P. Gomez-Puertas, W. Boomsma, and K. Lindorff-Larsen, PLoS ONE 10, e0121114 (2015).
http://dx.doi.org/10.1371/journal.pone.0121114
22.
D. De Sancho and R. B. Best, J. Am. Chem. Soc. 133, 6809 (2011).
http://dx.doi.org/10.1021/ja200834s
23.
O. F. Mohammed, G. S. Jas, M. M. Lin, and A. H. Zewail, Angew. Chem., Int. Ed. 48, 5628 (2009).
http://dx.doi.org/10.1002/anie.200900513
24.
M. M. Lin, O. F. Mohammed, G. S. Jas, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 108, 16622 (2011).
http://dx.doi.org/10.1073/pnas.1113649108
25.
G. S. Jas, W. A. Hegefeld, P. Májek, K. Kuczera, and R. Elber, J. Phys. Chem. B 116, 6598 (2012).
http://dx.doi.org/10.1021/jp211645s
26.
G. S. Jas and K. Kuczera, Mol. Simul. 38, 682 (2012).
http://dx.doi.org/10.1080/08927022.2012.671941
27.
A. Barducci, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.020603
28.
P. Tiwary and M. Parrinello, Phys. Rev. Lett. 111, 230602 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.230602
29.
P. Tiwary, V. Limongelli, M. Salvalaglio, and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 112, E386 (2015).
http://dx.doi.org/10.1073/pnas.1424461112
30.
M. Salvalaglio, P. Tiwary, M. Mazzotti, and M. Parrinello, preprint arXiv:1508.01642 (2015).
31.
J. Schneider and K. Reuter, J. Phys. Chem. Lett. 5, 3859 (2014).
http://dx.doi.org/10.1021/jz501939c
32.
P. Florová, P. Sklenovský, P. Banáš, and M. Otyepka, J. Chem. Theory Comput. 6, 3569 (2010).
http://dx.doi.org/10.1021/ct1003687
33.
D. S. Tomar, V. Weber, B. M. Pettitt, and D. Asthagiri, J. Phys. Chem. B 120, 69 (2016).
http://dx.doi.org/10.1021/acs.jpcb.5b09881
34.
J. Henriques and M. Skepö, J. Chem. Theory Comput. 12, 3407 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00429
35.
R. B. Best and J. Mittal, J. Phys. Chem. B 114, 14916 (2010).
http://dx.doi.org/10.1021/jp108618d
36.
J. L. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
37.
A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha et al., J. Phys. Chem. B 102, 3586 (1998).
http://dx.doi.org/10.1021/jp973084f
38.
J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
39.
V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins: Struct., Funct., Bioinf. 65, 712 (2006).
http://dx.doi.org/10.1002/prot.21123
40.
R. B. Best and G. Hummer, J. Phys. Chem. B 113, 9004 (2009).
http://dx.doi.org/10.1021/jp901540t
41.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
42.
N.-V. Buchete and G. Hummer, J. Phys. Chem. B 112, 6057 (2008).
http://dx.doi.org/10.1021/jp0761665
43.
F. Noé, I. Horenko, C. Schütte, and J. C. Smith, J. Chem. Phys. 126, 155102 (2007).
http://dx.doi.org/10.1063/1.2714539
44.
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).
http://dx.doi.org/10.1002/jcc.20084
45.
D. De Sancho, J. Mittal, and R. B. Best, J. Chem. Theory Comput. 9, 1743 (2013).
http://dx.doi.org/10.1021/ct301033r
46.
F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl, Proc. Natl. Acad. Sci. U. S. A. 106, 19011 (2009).
http://dx.doi.org/10.1073/pnas.0905466106
47.
N. Stanley, S. Esteban-Martín, and G. De Fabritiis, Nat. Commun. 5, 5272 (2014).
http://dx.doi.org/10.1038/ncomms6272
48.
M. Shirts and V. S. Pande, Science 290, 1903 (2000).
http://dx.doi.org/10.1126/science.290.5498.1903
49.
A. Barducci, M. Bonomi, and M. Parrinello, WIREs: Comput. Mol. Sci. 1, 826 (2011).
http://dx.doi.org/10.1002/wcms.31
50.
A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.3908
51.
H. Grubmüller, Phys. Rev. E 52, 2893 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.2893
52.
M. Salvalaglio, P. Tiwary, and M. Parrinello, J. Chem. Theory Comput. 10, 1420 (2014).
http://dx.doi.org/10.1021/ct500040r
53.
R. Zwanzig, J. Stat. Phys. 30, 255 (1983).
http://dx.doi.org/10.1007/BF01012300
54.
J. D. Chodera and F. Noé, Curr. Opin. Struct. Biol. 25, 135 (2014).
http://dx.doi.org/10.1016/j.sbi.2014.04.002
55.
N. P. Schafer, R. M. B. Hoffman, A. Burger, P. O. Craig, E. A. Komives, and P. G. Wolynes, PLoS ONE 7, e50635 (2012).
http://dx.doi.org/10.1371/journal.pone.0050635
56.
A. Berezhkovskii, G. Hummer, and A. Szabo, J. Chem. Phys. 130, 205102 (2009).
http://dx.doi.org/10.1063/1.3139063
57.
O. M. Becker and M. Karplus, J. Chem. Phys. 106, 1495 (1997).
http://dx.doi.org/10.1063/1.473299
58.
D. R. Nutt and J. C. Smith, J. Chem. Theory Comput. 3, 1550 (2007).
http://dx.doi.org/10.1021/ct700053u
59.
B. Zagrovic and V. Pande, J. Comput. Chem. 24, 1432 (2003).
http://dx.doi.org/10.1002/jcc.10297
60.
Y. M. Rhee and V. S. Pande, J. Phys. Chem. B 112, 6221 (2008).
http://dx.doi.org/10.1021/jp076301d
61.
D. de Sancho, A. Sirur, and R. B. Best, Nat. Commun. 5, 4307 (2014).
http://dx.doi.org/10.1038/ncomms5307
62.
W. Zheng, D. De Sancho, T. Hoppe, and R. B. Best, J. Am. Chem. Soc. 137, 3283 (2015).
http://dx.doi.org/10.1021/ja511609u
63.
M.-y. Shen and K. F. Freed, Biophys. J. 82, 1791 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75530-6
64.
M. R. Shirts and V. S. Pande, J. Chem. Phys. 122, 134508 (2005).
http://dx.doi.org/10.1063/1.1877132
65.
M. M. Teeter, Annu. Rev. Biophys. Biophys. Chem. 20, 577 (1991).
http://dx.doi.org/10.1146/annurev.bb.20.060191.003045
66.
M. S. Cheung, A. E. García, and J. N. Onuchic, Proc. Natl. Acad. Sci. U. S. A. 99, 685 (2002).
http://dx.doi.org/10.1073/pnas.022387699
67.
P. R. ten Wolde and D. Chandler, Proc. Natl. Acad. Sci. U. S. A. 99, 6539 (2002).
http://dx.doi.org/10.1073/pnas.052153299
68.
S. de Beer, N. P. Vermeulen, and C. Oostenbrink, Curr. Top. Med. Chem. 10, 55 (2010).
http://dx.doi.org/10.2174/156802610790232288
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/12/10.1063/1.4963340
Loading
/content/aip/journal/jcp/145/12/10.1063/1.4963340
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/12/10.1063/1.4963340
2016-09-26
2016-12-05

Abstract

In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/12/1.4963340.html;jsessionid=bSSeMiCMpjbDiLT9AeF7MXZD.x-aip-live-02?itemId=/content/aip/journal/jcp/145/12/10.1063/1.4963340&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/12/10.1063/1.4963340&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/12/10.1063/1.4963340'
Right1,Right2,Right3,