Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Takemura, S. Minomura, O. Shimomura, and Y. Fujii, Phys. Rev. Lett. 45, 1881 (1980).
H. K. Mao and R. J. Hemley, Science 244, 1462 (1989).
K. A. Johnson and N. W. Ashcroft, Nature 403, 632 (2000).
M. Eremets, R. J. Hemley, H. K. Mao, and E. Gregoryanz, Nature 411, 170 (2001).
S. Desgreniers, Y. K. Vohra, and A. L. Ruoff, J. Phys. Chem. 94, 1117 (1990).
K. Takemura, K. Sato, H. Fujihisa, and M. Onoda, Nature 423, 971 (2003).
Y. Fujii, K. Hase, Y. Ohishi, H. Fujihisa, N. Hamaya, K. Takemura, O. Shimomura, T. Kikegawa, Y. Amemiya, and T. Matsushita, Phys. Rev. Lett. 63, 536 (1989).
T. Kume, T. Hiraoka, Y. Ohya, S. Sasaki, and H. Shimizu, Phys. Rev. Lett. 94, 065506 (2005).
D. Duan, Y. Liu, Y. Ma, Z. Liu, T. Cui, B. Liu, and G. Zou, Phys. Rev. B 76, 104113 (2007).
U. D. Venkateswaran, E. A. Brandsen, M. E. Katakowski, A. Harutyunyan, G. Chen, A. L. Loper, and P. C. Eklund, Phys. Rev. B 65, 054102 (2005).
L. Alvarez, J. L. Bantignies, R. Le Parc, R. Aznar, J. L. Sauvajol, A. Merlen, D. Machon, and A. San Miguel, Phys. Rev. B 82, 205403 (2010).
M. G. Yao, T. Y. Wang, Z. Yao, D. F. Duan, S. L. Chen, Z. D. Liu, R. Liu, S. C. Lu, Y. Yuan, B. Zou, T. Cui, and B. B. Liu, J. Phys. Chem. C 117, 25052 (2013).
S. L. Chen, M. G. Yao, Y. Yuan, F. X. Ma, Z. D. Liu, R. Liu, X. Yang, B. Liu, B. Zou, T. Cui, and B. B. Liu, Phys. Chem. Chem. Phys. 6, 8301 (2014).
V. V. Poborchii, A. V. Kolobov, J. Caro, V. V. Zhuravlev, and K. Tanaka, Phys. Rev. Lett. 82, 1955 (1999).
Z. K. Tang, D. Sun, J. Wang, J. Chen, and G. Li, Appl. Phys. Lett. 73, 2287 (1998).
J. T. Ye, Z. K. Tang, and G. G. Siu, Appl. Phys. Lett. 88, 073114 (2006).
P. C. Eklund, N. Kambe, G. Dresselhasu, and M. S. Dresselhasu, Phys. Rev. B 18, 7069 (1978).
B. B. Liu, Q. L. Cui, M. Yu, G. T. Zou, J. Carlsten, T. Wågberg, and B. Sundqvist, J. Phys.: Condens. Matter 14, 11255 (2002).
A. L. Aguiar, A. San-Miguel, E. B. Barros, M. Kalbáè, D. Machon, Y. A. Kim, H. Muramatsu, M. Endo, and A. G. Souza, Phys. Rev. B 86, 195410 (2012).
A. San-Miguel, P. Mélinon, D. Connétable, X. Blase, F. Tournus, E. Reny, S. Yamanaka, and J. P. Itié, Phys. Rev. B 65, 054109 (2002).
H. Lv, M. G. Yao, Q. G. Li, R. Liu, B. Liu, Z. Yao, D. D. Liu, Z. D. Liu, J. Liu, Z. J. Chen, B. Zou, T. Cui, and B. B. Liu, Sci. Rep. 5, 13234 (2015).
Z. D. Liu, M. G. Yao, Y. Yuan, S. L. Chen, R. Liu, S. C. Lu, B. Zou, T. Cui, and B. B. Liu, J. Raman Spectrosc. 46, 413 (2015).
A. San Miguel, H. Libotte, J. P. Gaspard, M. Gauthier, J. P. Itié, and A. Polian, Eur. Phys. J. B 17, 227 (2000).
A. San-Miguel, H. Libotte, M. Gauthier, G. Aquilanti, S. Pascarelli, and J.-P. Gaspard, Phys. Rev. Lett. 94, 015501 (2007).
M. Wu, S. T. John, and Y. Pan, Sci. Rep. 6, 25649 (2016).
H. Fujihisa, Y. Fujii, K. Takemura, and O. Shimomura, J. Phys. Chem. Solids 56, 1439 (1995).
A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, High Pressure Res. 14, 235 (1996).
S. B. Fagan, R. Mota, A. J. R. da Silva, and A. Fazzio, Phys. Rev. B 67, 205414 (2003).
S.-P. Huang, W.-D. Cheng, J.-M. Hu, Z. Xie, H. Hu et al., J. Chem. Phys. 129, 174108 (2008).
H. D. Sun, Z. K. Tang, J. Chen, and G. Li, Appl. Phys. A 69, 381 (1999).
P. Baierl and W. Kiefer, J. Raman Spectrosc. 3, 353 (1975).
P.-G. Johannsen and W. B. Holzapfel, J. Phys. C: Solid State Phys. 16, 1961 (1983).
H. Lv, M. G. Yao, Q. G. Li, R. Liu, S. C. Lu, L. H. Jiang, W. Cui, Z. D. Liu, J. Liu, Z. J. Chen, B. Zou, T. Cui, and B. B. Liu, J. Appl. Phys. 111, 112615 (2012).

Data & Media loading...


Article metrics loading...



We present a joint experimental and theoretical study on the high-pressure behavior of bromine confined in the one-dimensional (1D) nanochannels of zeolite AlPO-5 (AFI) single crystals. Raman scattering experiments indicate that loading bromine into AFI single crystals can lead to the formation of bromine molecular chains inside the nanochannels of the crystals. High-pressure Raman and X-ray diffraction studies demonstrate that high pressure can increase the length of the confined bromine molecular chains and modify the inter- and intramolecular interactions of the molecules. The confined bromine shows a considerably different high-pressure behavior to that of bulk bromine. The pressure-elongated bromine molecular chains can be preserved when the pressure is reduced to ambient pressure. Theoretical simulations explain the experimental results obtained from the Raman spectroscopy and X-ray diffraction studies. Furthermore, we find that the intermolecular distance between confined bromine molecules gradually becomes comparable to the intramolecular bond length in bromine molecules upon compression. This may result in the dissociation of the bromine molecules and the formation of 1D bromine atomic chains at pressures above 24 GPa. Our study suggests that the unique nanoconfinement has a considerable effect on the high-pressure behavior of bromine, and the confined bromine species concomitantly enhance the structural stability of the host AFI single crystals.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd