Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
E. Barry, Z. Hensel, Z. Dogic, M. Shribak, and R. Oldenbourg, Phys. Rev. Lett. 96, 018305 (2006).
F. Manna, V. Lorman, R. Podgornik, and B. Zeks, Phys. Rev. E 75, 030901(R) (2007).
H. B. Kolli, E. Frezza, G. Cinacchi, A. Ferrarini, A. Giacometti, and T. S. Hudson, J. Chem. Phys. 140, 081101 (2014).
H. B. Kolli, E. Frezza, G. Cinacchi, A. Ferrarini, A. Giacometti, T. S. Hudson, C. De Michele, and F. Sciortino, Soft Matter 10, 8171 (2014).
H. B. Kolli, G. Cinacchi, A. Ferrarini, and A. Giacometti, Faraday Discuss. 186, 171 (2016).
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987);
J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1997);
D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004).
G. Cinacchi, L. De Gaetani, and A. Tani, J. Chem. Phys. 122, 184513 (2005).
M. Cifelli, G. Cinacchi, and L. De Gaetani, J. Chem. Phys. 125, 164912 (2006).
G. Cinacchi and L. De Gaetani, Phys. Rev. E 79, 011706 (2009).
S. Plimpton, J. Comput. Phys. 117, 1 (1995),
It was explicitly verified that, in a MD-NVT numerical simulation carried out on the soft repulsive helical particle system at kBT/ϵ = 1 and a value of number density coincident with the average density obtained in the previous MC-NPT numerical simulation on the corresponding hard helical particle system at Pd3/kBT = 0.75, the resulting average dimensionless pressure 3/kBT was 0.77, consistent with the value set in the previous MC-NPT numerical simulation.
On the basis of, e.g., a comparison between the phase behaviour of hard14 and soft15 repulsive rod-like particles.
P. Bolhuis and D. Frenkel, J. Chem. Phys. 106, 666 (1996).
G. Cinacchi, L. De Gaetani, and A. Tani, Phys. Rev. E 71, 031703 (2005).
R. van Roij, P. Bolhuis, B. Mulder, and D. Frenkel, Phys. Rev. E 52, R1277 (1995).
J. S. van Duijneveldt and M. P. Allen, Mol. Phys. 90, 243 (1997).
G. Cinacchi and L. De Gaetani, Phys. Rev. Lett. 103, 257801 (2009).
M. P. Allen, Phys. Rev. Lett. 65, 2881 (1990).
L. van Hove, Phys. Rev. 95, 249 (1954).
A. Rahman, Phys. Rev. 136, A405 (1964).
P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett. 99, 060604 (2007).
M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000);
S. C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).
Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier et al. (Oxford University Press, 2011).
M. P. Lettinga and E. Grelet, Phys. Rev. Lett. 99, 197802 (2007).
It is worth noting that the work by A. Patti et al., Phys. Rev. Lett. 103, 248304 (2009), that postdated Ref. 10, actually claims that chain-like clusters of rod-like particles moving across the layers would contribute to the translational diffusive dynamics along the director in a smectic phase, thus attempting to stretch the analogy between an equilibrium smectic liquid-crystal and a non-equilibrium glass forming fluid. The stringent dynamical criterion adopted in Ref. 10 did not indicate this, however, but rather pointed to the translational diffusive dynamics along the director in a smectic phase essentially remaining an individual process.

Data & Media loading...


Article metrics loading...



The mechanism of diffusion of helical particles in the new screw-like nematic phase is studied by molecular dynamics numerical simulation. Several dynamical indicators are reported that evidence and microscopically characterise the special translo-rotational motion by which helical particles move in this chiral liquid-crystalline phase. Besides mean square displacements and diffusion coefficients resolved parallel and perpendicular to the nematic director, a suitable translo-rotational van Hove self-correlation function and a sequence of translational and rotational velocity, self- and distinct-, time correlation functions are calculated. The analysis of all these correlation functions elicits the operativeness of the aforementioned coupled mechanism and allows its short- and long-time quantitative characterisation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd