Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/13/10.1063/1.4963168
1.
L. Wieseltier, New York Times Book Review, January 7,2015.
2.
P. Cabanne, Dialogues with Marcel Duchamp (Thames and Hudson, London, 1971), p. 30.
3.
D. F. Styer, M. S. Balkin, K. M. Becker, M. R. Burns, C. E. Dudley, S. T. Forth, J. S. Gaumer, M. A. Kramer, D. C. Oertel, L. H. Park, M. T. Rinkoski, C. T. Smith, and T. D. Wotherspoon, Am. J. Phys. 70, 288 (2002).
http://dx.doi.org/10.1119/1.1445404
4.
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
5.
R. Levy, Proc. Natl. Acad. Sci. U. S. A. 76, 6062 (1979).
http://dx.doi.org/10.1073/pnas.76.12.6062
6.
E. S. Kryachko and E. V. Ludeña, Energy Density Functional Theory of Many-Electron Systems (Kluwer, Dordrecht, 1990).
7.
R. van Leeuwen, Adv. Quantum Chem. 43, 25 (2003).
http://dx.doi.org/10.1016/S0065-3276(03)43002-5
8.
E. Engel and R. M. Dreizler, Density Functional Theory (Springer-Verlag, Berlin, 2011).
9.
W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1253
10.
J. Shen and P. Piecuch, J. Chem. Phys. 138, 194102 (2013).
http://dx.doi.org/10.1063/1.4803883
11.
N. Nakatani and G. K. Chan, J. Chem. Phys. 138, 134113 (2013).
http://dx.doi.org/10.1063/1.4798639
12.
C. Riplinger, B. Sandhoefer, A. Hansen, and F. Neese, J. Chem. Phys. 139, 134101 (2013).
http://dx.doi.org/10.1063/1.4821834
13.
J. Friedrich and K. Walczak, J. Chem. Theory Comput. 9, 408 (2013).
http://dx.doi.org/10.1021/ct300938w
14.
B. Chan and L. Radom, J. Chem. Theory Comput. 9, 4769 (2013).
http://dx.doi.org/10.1021/ct4005323
15.
G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365 (2013).
http://dx.doi.org/10.1038/nature11770
16.
C. Nemes, G. Barcza, Z. Nagy, Ö. Legeza, and P. Szolgay, Comput. Phys. Commun. 185, 1570 (2014).
http://dx.doi.org/10.1016/j.cpc.2014.02.021
17.
S. Sharma, T. Yanai, G. H. Booth, C. J. Umrigar, and G. K. Chan, J. Chem. Phys. 140, 104112 (2014).
http://dx.doi.org/10.1063/1.4867383
18.
K. Wang, W. Li, and S. Li, J. Chem. Theory Comput. 10, 1546 (2014).
http://dx.doi.org/10.1021/ct401060m
19.
Y. Shao et al., Mol. Phys. 113, 184 (2014).
http://dx.doi.org/10.1080/00268976.2014.952696
20.
K. Aidas et al., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 269 (2014).
http://dx.doi.org/10.1002/wcms.1172
21.
S. Sharma, K. Sivalingam, F. Neese, and G.K.-L. Chan, Nat. Chem. 6, 927 (2014).
http://dx.doi.org/10.1038/nchem.2041
22.
K. Raghavachari and A. Saha, Chem. Rev. 115, 5643 (2015).
http://dx.doi.org/10.1021/cr500606e
23.
H.-J. Werner, G. Knizia, C. Krause, M. Schwilk, and M. Dornbach, J. Chem. Theory Comput. 11, 484 (2015).
http://dx.doi.org/10.1021/ct500725e
24.
M. Govoni and G. Galli, J. Chem. Theory Comput. 11, 2680 (2015).
http://dx.doi.org/10.1021/ct500958p
25.
Y. Ohnishi and S. Ten-no, J. Comput. Chem. 37, 2447 (2016).
http://dx.doi.org/10.1002/jcc.24468
26.
P. Piecuch, J. A. Hansen, and A. O. Ajala, Mol. Phys. 113, 3085 (2015).
http://dx.doi.org/10.1080/00268976.2015.1076901
27.
J. Toulouse, R. Assaraf, and C. J. Umrigar, Adv. Quantum Chem. 73, 285 (2016).
http://dx.doi.org/10.1016/bs.aiq.2015.07.003
28.
G. Li Manni, S. D. Smart, and A. Alavi, J. Chem. Theory Comput. 12, 1245 (2016).
http://dx.doi.org/10.1021/acs.jctc.5b01190
29.
J. Fosso-Tande, T.-S. Nguyen, G. Gidofalvi, and A. E. DePrince III, J. Chem. Theory Comput. 12, 2260 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00190
30.
L. B. Roskop, E. F. Valeev, E. A. Carter, M. S. Gordon, and T. L. Windus, J. Chem. Theory Comput. 12, 3176 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00315
31.
D. Ma, G. Li Manni, J. Olsen, and L. Gagliardi, J. Chem. Theory Comput. 12, 3208 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00382
32.
F. Aquilante et al., J. Comput. Chem. 37, 506541 (2016).
http://dx.doi.org/10.1002/jcc.24221
33.
N. Schuch and F. Verstraete, Nat. Phys. 5, 732 (2009).
http://dx.doi.org/10.1038/nphys1370
34.
G. Pacchioni, Catal. Lett. 145, 80 (2015).
http://dx.doi.org/10.1007/s10562-014-1386-2
35.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
36.
L. H. Thomas, Math. Proc. Cambridge Philos. Soc. 23, 542 (1927).
http://dx.doi.org/10.1017/S0305004100011683
37.
E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927).
38.
P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
http://dx.doi.org/10.1017/S0305004100016108
39.
E. Teller, Rev. Mod. Phys. 34, 627 (1962).
http://dx.doi.org/10.1103/RevModPhys.34.627
40.
D. R. Hartree, Math. Proc. Cambridge Philos. Soc. 24, 89 (1928).
http://dx.doi.org/10.1017/S0305004100011919
41.
J. C. Slater, Phys. Rev. 81, 385 (1951).
http://dx.doi.org/10.1103/PhysRev.81.385
42.
C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
http://dx.doi.org/10.1103/RevModPhys.23.69
43.
I. Shin and E. A. Carter, J. Chem. Phys. 140, 18A531 (2014).
http://dx.doi.org/10.1063/1.4869867
44.
V. L. Lignéres and E. A. Carter, in Handbook of Materials Modeling, edited by S. Yip (Springer, Dordrecht, 2005), pp. 137148.
45.
A. C. Cancio1, D. Stewart, and A. Kuna, J. Chem. Phys. 144, 084107 (2016).
http://dx.doi.org/10.1063/1.4942016
46.
Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering, edited by D. Keyes, Y. Saad, and D. G. Truhlar (Society for Industrial and Applied Mathematics, Philadelphia, 1995).
47.
G. Fradelos, J. J. Lutz, T. A. Wesołowski, P. Piecuch, and M. Włoch, J. Chem. Theory Comput. 7, 1647 (2011).
http://dx.doi.org/10.1021/ct200101x
48.
C. Huang, M. Pavone, and E. A. Carter, J. Chem. Phys. 134, 154110 (2011).
http://dx.doi.org/10.1063/1.3577516
49.
S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104 (2012).
http://dx.doi.org/10.1063/1.3675845
50.
F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012).
http://dx.doi.org/10.1021/ct300544e
51.
J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 137, 224113 (2012).
http://dx.doi.org/10.1063/1.4770226
52.
S. M. Beyhan, A. W. Götz, and L. Visscher, J. Chem. Phys. 138, 094113 (2013).
http://dx.doi.org/10.1063/1.4793629
53.
C. R. Jacob and J. Neugebauer, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 325 (2014).
http://dx.doi.org/10.1002/wcms.1175
54.
R. K. Wangsness, Electromagnetic Fields (Wiley, New York, 1979), p. 184.
55.
E. J. Baerends and O. V. Gritsenko, J. Phys. Chem. A 101, 5383 (1997).
http://dx.doi.org/10.1021/jp9703768
56.
J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, and G. I. Csonka, J. Chem. Theory Comput. 5, 902 (2009).
http://dx.doi.org/10.1021/ct800531s
57.
U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
http://dx.doi.org/10.1088/0022-3719/5/13/012
58.
A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.1912
59.
C. van Wüllen, J. Comput. Chem. 23, 779 (2002).
http://dx.doi.org/10.1002/jcc.10043
60.
C. R. Jacob and M. Reiher, Int. J. Quantum Chem. 112, 3661 (2012).
http://dx.doi.org/10.1002/qua.24309
61.
J. C. Stoddart, N. H. March, and D. Wild, Int. J. Quantum Chem. 5, 745 (1971).
http://dx.doi.org/10.1002/qua.560050883
62.
J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).
http://dx.doi.org/10.1063/1.1740120
63.
L. M. Sandratskii and P. G. Goletskii, J. Phys. F 16, L43 (1986).
http://dx.doi.org/10.1088/0305-4608/16/2/002
64.
S. Luo, I. Rivalta, V. Batista, and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2629 (2011).
http://dx.doi.org/10.1021/jz201077n
65.
S. Luo and D. G. Truhlar, J. Chem. Theory Comput. 9, 5349 (2013).
http://dx.doi.org/10.1021/ct4007508
66.
J. Gräfenstein and D. Cremer, Phys. Chem. Chem. Phys. 2, 2091 (2000).
http://dx.doi.org/10.1039/a909905k
67.
N. E. Schultz, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 109, 11127 (2005).
http://dx.doi.org/10.1021/jp0539223
68.
J. N. Harvey, Annu. Rep. Prog. Chem., Sect. C 102, 203 (2006).
http://dx.doi.org/10.1039/b419105f
69.
A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008).
http://dx.doi.org/10.1126/science.1158722
70.
R. K. Carlson, S. O. Odoh, S. J. Tereniak, C. C. Lu, and L. Gagliardi, J. Chem. Theory Comput. 11, 4093 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00412
71.
P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).
http://dx.doi.org/10.1103/physrev.97.1474
72.
L. Noodlelman, J. Chem. Phys. 74, 5737 (1981).
http://dx.doi.org/10.1063/1.440939
73.
L. Noodleman, J. G. Norman, J. H. Osborne, A. Aizman, and D. A. Case, J. Am. Chem. Soc. 107, 3418 (1985).
http://dx.doi.org/10.1021/ja00298a004
74.
K. Yamaguchi, T. Tsunekawa, Y. Toyoda, and T. Fueno, Chem. Phys. Lett. 143, 371 (1988).
http://dx.doi.org/10.1016/0009-2614(88)87049-0
75.
K. Yamaguchi, F. Jensen, A. Dorigo, and K. N. Houk, Chem. Phys. Lett. 149, 537 (1988).
http://dx.doi.org/10.1016/0009-2614(88)80378-6
76.
C. J. Cramer, F. J. Dulles, D. J. Giesen, and J. Almlöf, Chem. Phys. Lett. 245, 165 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01008-W
77.
M. Nishino, S. Yamanaka, Y. Yoshioka, and K. Yamaguchi, J. Phys. Chem. A 101, 705 (1997).
http://dx.doi.org/10.1021/jp962091l
78.
R. Caballol, O. Castell, F. Illas, I. de P. R. Moreira, and J. P. Matrieu, J. Phys. Chem. A 101, 7860 (1997).
http://dx.doi.org/10.1021/jp9711757
79.
T. Soda, Y. Kitigawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, and K. Yamaguchi, Chem. Phys. Lett. 319, 223 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00166-4
80.
V. Bachler, G. Olbrich, F. Neese, and K. Wieghardt, Inorg. Chem. 41, 4179 (2002).
http://dx.doi.org/10.1021/ic0113101
81.
T. Lovell, T. Q. Liu, D. A. Case, and L. Noodlelman, J. Am. Chem. Soc. 125, 8377 (2003).
http://dx.doi.org/10.1021/ja0301572
82.
L. Noodlelman and W. G. Han, J.Biol. Inorg. Chem. 11, 674 (2006).
http://dx.doi.org/10.1007/s00775-006-0136-3
83.
I. de P. R. Moreira and F. Illas, Phys. Chem. Chem. Phys. 8, 1645 (2006).
http://dx.doi.org/10.1039/b515732c
84.
M. E. Ali and S. N. Datta, J. Phys. Chem. A 110, 2776 (2006).
http://dx.doi.org/10.1021/jp057083w
85.
E. A. A. Noh and J. Zhang, Chem. Phys. Lett. 330, 82 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.07.042
86.
S. Niu and T. Ichiye, Theor. Chem. Acc. 117, 275 (2007).
http://dx.doi.org/10.1007/s00214-006-0136-y
87.
M. Shoji, K. Koizumi, T. Taniguchi, Y. Kitagawa, S. Yamanaka, M. Okumura, and K. Yamaguchi, Int. J. Quantum Chem. 107, 116 (2007).
http://dx.doi.org/10.1002/qua.21016
88.
I. de P. R. Moreira, R. Costa, M. Filatov, and F. Illas, J. Chem. Theory Comput. 3, 764 (2007).
http://dx.doi.org/10.1021/ct7000057
89.
P. Seal and S. Chakraborti, J. Phys. Chem. A 112, 3409 (2008).
http://dx.doi.org/10.1021/jp076654c
90.
R. Valero, R. Costa, I. de P. R. Moreira, D. G. Truhlar, and F. Illas, J. Chem. Phys. 128, 114103 (2008).
http://dx.doi.org/10.1063/1.2838987
91.
C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009).
http://dx.doi.org/10.1039/b907148b
92.
F. Neese, Coord. Chem. Rev. 253, 526 (2009).
http://dx.doi.org/10.1016/j.ccr.2008.05.014
93.
S. Luo and D. G. Truhlar, J. Chem. Theory Comput. 8, 4112 (2012).
http://dx.doi.org/10.1021/ct300737t
94.
E. V. M. Kessler, S. Schmitt, and C. van Wüllen, J. Chem. Phys. 139, 184110 (2013).
http://dx.doi.org/10.1063/1.4828727
95.
S. J. Luo, B. Averkiev, K. R. Yang, X. Xu, and D. G. Truhlar, J. Chem. Theory Comput. 10, 102 (2014).
http://dx.doi.org/10.1021/ct400712k
96.
H. B. Schlegel and J. J. W. McDouall, in Computational Advances in Organic Chemistry: Molecular Structure Reactivity, edited by C. Ögritir and G. Csizmadia (Kluwer Dordrect, 1991), p. 167.
97.
G. Li Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen, D. G. Truhlar, and L. Gagliardi, “Multiconfiguration pair-density functional theory,” J. Chem.Theory Comput. 10, 3669 (2014);
http://dx.doi.org/10.1021/ct500483t
G. Li Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen, D. G. Truhlar, and L. Gagliardi, J. Chem.Theory Comput. 12, 458(E) (2016).
http://dx.doi.org/10.1021/acs.jctc.5b01182
98.
R. K. Carlson, G. Li Manni, A. L. Sonnenberger, D. G. Truhlar, and L. Gagliardi, “Multiconfiguration pair-density functional Theory: Barrier heights and main group and transition metal energetics,” J. Chem. Theory Comput. 11, 82 (2015);
http://dx.doi.org/10.1021/ct5008235
R. K. Carlson, G. Li Manni, A. L. Sonnenberger, D. G. Truhlar, and L. Gagliardi, J. Chem. Theory Comput. 12, 457(E) (2016).
http://dx.doi.org/10.1021/acs.jctc.5b01154
99.
S. Ghosh, A. L. Sonnenberger, C. E. Hoyer, D. G. Truhlar, and L. Gagliardi, “Multiconfiguration pair-density functional theory outperforms Kohn-Sham density functional theory and multireference perturbation theory for ground-state and excited-state charge transfer,” J. Chem. Theory Comput. 11, 3643 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00456
100.
C. E. Hoyer, S. Ghosh, D. G. Truhlar, and L. Gagliardi, “Multiconfiguration pair-density functional theory is as accurate as CASPT2 for electronic excitation,” J. Phys. Chem. Lett. 7, 586 (2016).
http://dx.doi.org/10.1021/acs.jpclett.5b02773
101.
C. E. Hoyer, L. Gagliardi, and D. G. Truhlar, “Multiconfiguration pair-density functional theory spectral calculations are stable to adding diffuse basis functions,” J. Phys. Chem. Lett. 6, 4184 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01888
102.
B. Miehlich, H. Stoll, and A. Savin, Mol. Phys. 91, 527 (1997).
http://dx.doi.org/10.1080/002689797171418
103.
S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999).
http://dx.doi.org/10.1063/1.479866
104.
S. Gusarov, P. A. Malmqvist, and R. Lindh, Mol. Phys. 102, 2207 (2004).
http://dx.doi.org/10.1080/00268970410001734297
105.
J. Grafenstein and D. Cremer, Mol. Phys. 103, 279 (2005).
http://dx.doi.org/10.1080/00268970512331318858
106.
E. Goll, H. J. Werner, H. Stoll, T. Leininger, P. Gori-Giorgi, and A. Savin, Chem. Phys. 329, 276 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.05.020
107.
F. M. Ying, P. F. Su, Z. H. Chen, S. Shaik, and W. Wu, J. Chem. Theory Comput. 8, 1608 (2012).
http://dx.doi.org/10.1021/ct200803h
108.
K. Sharkas, A. Savin, H. J. A. Jensen, and J. Toulouse, J. Chem. Phys. 137, 044104 (2012).
http://dx.doi.org/10.1063/1.4733672
109.
A. Stoyanova, A. M. Teale, J. Toulouse, T. Helgaker, and E. Fromager, J. Chem. Phys. 139, 134113 (2013).
http://dx.doi.org/10.1063/1.4822135
110.
L. Gagliardi, D. G. Truhlar, G. Li Manni, R. K. Carlson, C. E. Hoyer, and J. L. Bao, “Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems,” Acc. Chem. Res. (submitted).
111.
J. A. Pople, P. M. W. Gill, and N. C. Handy, Int. J. Quantum Chem. 56, 303 (1995).
http://dx.doi.org/10.1002/qua.560560414
112.
K. E. Riley, M. Pitonak, P. Jurecka, and P. Hobza, Chem. Rev. 110, 5023 (2010).
http://dx.doi.org/10.1021/cr1000173
113.
J. Gao and D. G. Truhlar, Annu. Rev. Phys. Chem. 52, 467 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.091301.150114
114.
H. Lin and D. G. Truhlar, Theor. Chem. Acc. 117, 285 (2007).
http://dx.doi.org/10.1007/s00214-006-0143-z
115.
H. M. Senn and W. Thiel, Angew. Chem., Int. Ed. 48, 1198 (2009).
http://dx.doi.org/10.1002/anie.200802019
116.
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
117.
S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
http://dx.doi.org/10.1002/jcc.21759
118.
S. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 211 (2011).
http://dx.doi.org/10.1002/wcms.30
119.
S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen, J. Chem. Phys. 143, 054107 (2015).
http://dx.doi.org/10.1063/1.4927476
120.
D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7868
121.
A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
122.
A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B 53, 2764 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.3764
123.
B. G. Janesko, T. M. Henderson, and G. E. Scuseria, Phys. Chem. Chem. Phys. 11, 443 (2009).
http://dx.doi.org/10.1039/B812838C
124.
R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).
http://dx.doi.org/10.1103/PhysRev.90.317
125.
J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 3640 (1976).
http://dx.doi.org/10.1103/PhysRevA.14.36
126.
Z.-H. Yang, H. Pneg, J. Sun, and J. P. Perdew, Phys. Rev. B 93, 205205 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.205205
127.
J. Garza, J. A. Nichols, and D. A. Dixon, J. Chem. Phys. 113, 6029 (2000).
http://dx.doi.org/10.1063/1.1308547
128.
Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2004).
http://dx.doi.org/10.1021/jp049253v
129.
Y. Zhao, B. J. Lynch, and D. G. Truhlar, Phys. Chem. Chem. Phys. 7, 43 (2005).
http://dx.doi.org/10.1039/b416937a
130.
S. Grimme and F. Neese, J. Chem. Phys. 127, 154116 (2007).
http://dx.doi.org/10.1063/1.2772854
131.
A. Tarnopolsky, A. Karton, R. Sertchook, D. Vuzman, and J. M. L. Martin, J. Phys. Chem. A 112, 3 (2008).
http://dx.doi.org/10.1021/jp710179r
132.
Y. Zhang, X. Xu, and W. A. Goddard III, Proc. Natl. Acad. Sci. U. S. A. 106, 4963 (2009).
http://dx.doi.org/10.1073/pnas.0901093106
133.
I. Y. Zhang, Y. Luo, and X. Xu, J. Chem. Phys. 132, 194105 (2010).
http://dx.doi.org/10.1063/1.3424845
134.
L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).
http://dx.doi.org/10.1021/ct100466k
135.
I. Y. Zhang, X. Xu, Y. Jung, and W. A. Goddard, Proc. Natl. Acad. Sci. U. S. A. 108, 19896 (2011).
http://dx.doi.org/10.1073/pnas.1115123108
136.
I. Y. Zhang and X. Xu, Int. Rev. Phys. Chem. 30, 115 (2011).
http://dx.doi.org/10.1080/0144235X.2010.542618
137.
K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011).
http://dx.doi.org/10.1063/1.3544215
138.
E. Brémond and C. Adamo, J. Chem. Phys. 135, 024106 (2011).
http://dx.doi.org/10.1063/1.3604569
139.
J. Toulouse, K. Sharkas, E. Brémond, and C. Adamo, J. Chem. Phys. 135, 101102 (2011).
http://dx.doi.org/10.1063/1.3640019
140.
I. Y. Zhang, N. Q. Su, É. A. G. Bremond, C. Adamo, and X. Xu, J. Chem. Phys. 136, 174103 (2012).
http://dx.doi.org/10.1063/1.3703893
141.
J.-D. Chai and S.-P. Mao, Chem. Phys. Lett. 538, 121 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.04.045
142.
R. Peverati and M. Head-Gordon, J. Chem. Phys. 139, 024110 (2013).
http://dx.doi.org/10.1063/1.4812689
143.
D. Bousquet, E. Brémond, J. C. Sancho-García, I. Ciofini, and C. Adamo, J. Chem. Theory Comput. 9, 3444 (2013).
http://dx.doi.org/10.1021/ct400358f
144.
S. Kozuch and J. M. L. Martin, J. Comput. Chem. 34, 2327 (2013).
http://dx.doi.org/10.1002/jcc.23391
145.
J. C. Sancho-García and C. Adamo, Phys. Chem. Chem. Phys. 15, 14581 (2013).
http://dx.doi.org/10.1039/c3cp50907a
146.
I. Y. Zhang and X. Xu, J. Phys. Chem. Lett. 4, 1669 (2013).
http://dx.doi.org/10.1021/jz400695u
147.
L. Goerigk and S. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 576 (2014).
http://dx.doi.org/10.1002/wcms.1193
148.
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5390
149.
L. Hedin, J. Phys.: Condens. Matter 11, R489 (1999).
http://dx.doi.org/10.1088/0953-8984/11/42/201
150.
G. Oneida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.601
151.
M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235102
152.
C. Cremer, Mol. Phys. 99, 1899 (2001).
http://dx.doi.org/10.1080/00268970110083564
153.
M. Cook and M. Karplus, J. Phys. Chem. 91, 31 (1987).
http://dx.doi.org/10.1021/j100285a010
154.
J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.844
155.
R. Gáspár, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).
http://dx.doi.org/10.1007/BF03156228
156.
V. Tschinke and T. Ziegler, J. Chem. Phys. 93, 8051 (1990).
http://dx.doi.org/10.1063/1.459335
157.
M. A. Buijse and E. J. Baerends, J. Chem. Phys. 93, 4129 (1990).
http://dx.doi.org/10.1063/1.458746
158.
J. Baker, A. Scheiner, and J. Andzelm, Chem. Phys. Lett. 216, 380 (1993).
http://dx.doi.org/10.1016/0009-2614(93)90113-F
159.
N. C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001).
http://dx.doi.org/10.1080/00268970010018431
160.
A. D. Becke, J. Chem. Phys. 112, 4020 (2000).
http://dx.doi.org/10.1063/1.480951
161.
A. D. Becke, J. Chem. Phys. 138, 074109 (2013).
http://dx.doi.org/10.1063/1.4790598
162.
M. Grüning, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 118, 7183 (2003).
http://dx.doi.org/10.1063/1.1562197
163.
E. R. Johnson and A. D. Becke, J. Chem. Phys. 128, 124105 (2008).
http://dx.doi.org/10.1063/1.2894878
164.
F. Malet and P. Gori-Giorgi, Phys. Rev. Lett. 109, 246402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.246402
165.
J. Kong and E. Proynov, J. Chem. Theory Comput. 12, 133 (2016).
http://dx.doi.org/10.1021/acs.jctc.5b00801
166.
E. Lunday, Modern Art Invasion: Picasso, Duchamp, And The 1913 Armory Show That Scandalized America (Lyons Press/Globe Pequot Press, Guilford, CT, 2013), p. 38.
167.
P. M. W. Gill and P. F. Loos, Theor. Chem. Acc. 131, 1 (2012).
http://dx.doi.org/10.1007/s00214-011-1069-7
168.
E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
http://dx.doi.org/10.1039/tf9383400678
169.
J. Sun, J. P. Perdew, Z. Yang, and H. Peng, J. Chem. Phys. 144, 191101 (2016).
http://dx.doi.org/10.1063/1.4950845
170.
A. E. Mattsson and W. Kohn, J. Chem. Phys. 115, 3441 (2001).
http://dx.doi.org/10.1063/1.1396649
171.
J. A. Pople, R. D. Adamson, and P. M. W. Gill, J. Phys. Chem. 100, 6348 (1996).
http://dx.doi.org/10.1021/jp963467y
172.
S. Liu and R. G. Parr, Phys. Rev. A 55, 1792 (1997).
http://dx.doi.org/10.1103/PhysRevA.55.1792
173.
W.-M. Hoe, A. J. Cohen, and N. C. Handy, Chem. Phys. Lett. 341, 319 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00581-4
174.
L. J. Sham, Phys. Rev. B 32, 3876 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.3876
175.
O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Phys. Rev. B 20, 3136 (1979).
http://dx.doi.org/10.1103/PhysRevB.20.3136
176.
M. J. S. Dewar, J. Phys. Chem. 89, 2145 (1985).
http://dx.doi.org/10.1021/j100257a004
177.
A. D. Becke, J. Chem. Phys. 107, 8554 (1997).
http://dx.doi.org/10.1063/1.475007
178.
J. P. Perdew, in Density Functional Theory, edited by P. Geerlings, F. De Proft, and W. Langenaeker (VUB University Press, Bruseels, 1999), pp. 87109.
179.
J. C. Slater, Quantum Theory of Matter, 2nd ed. (McGraw-Hill, New York, 1968), p. 142.
180.
E. Fermi and E. Amaldi, Accad. Ital. Rome 6, 119 (1934).
181.
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
182.
G. E. Scuseria and V. N. Staroverov, in Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 669724.
183.
J. Hafner, J. Comput. Chem. 29, 2044 (2008).
http://dx.doi.org/10.1002/jcc.21057
184.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constatin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
185.
D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.1809
186.
J. P. Perdew and Y. Wang, Phys. Rev. 33, 8800 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8800
187.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
188.
J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
189.
J. P. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), pp. 1120.
190.
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
191.
M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.2010
192.
A. D. Becke, J. Chem. Phys. 84, 4524 (1986).
http://dx.doi.org/10.1063/1.450025
193.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
194.
A. D. Boese and N. C. Handy, J. Chem. Phys. 114, 5497 (2000).
http://dx.doi.org/10.1063/1.1347371
195.
R. Peverati and D. G. Truhlar, J. Chem. Theory Comput. 8, 2310 (2012).
http://dx.doi.org/10.1021/ct3002656
196.
H. S. Yu, W. Zhang, P. Verma, X. He, and D. G. Truhlar, Phys. Chem. Chem. Phys. 17, 12146 (2015).
http://dx.doi.org/10.1039/C5CP01425E
197.
M. Levy, Phys. Rev. A 43, 4637 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.4637
198.
R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 16187 (2012).
http://dx.doi.org/10.1039/c2cp42576a
199.
J. Harris and R. O. Jones, J. Phys. F 4, 1170 (1974).
http://dx.doi.org/10.1088/0305-4608/4/8/013
200.
O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4274
201.
D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.2884
202.
J. Harris, Phys. Rev. A 29, 1648 (1984).
http://dx.doi.org/10.1103/PhysRevA.29.1648
203.
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
204.
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
205.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976), pp. 337344.
206.
Y. Guo, J. Robertson, and S. J. Clark, J. Phys.: Condens. Matter 27, 025501 (2015).
http://dx.doi.org/10.1088/0953-8984/27/2/025501
207.
G. Strinati, Riv. Nuovo Cimento 11, 1 (1988).
http://dx.doi.org/10.1007/BF02725962
208.
M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, and S. Botti, Phys. Rev. B 83, 035119 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035119
209.
S. Huang, B. Wilson, B. Wang, Y. Fang, K. Buffington, A. Stein, and D. G. Truhlar, J. Am. Chem. Soc. 137, 1099211003 (2015).
http://dx.doi.org/10.1021/jacs.5b04690
210.
H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998).
http://dx.doi.org/10.1063/1.476438
211.
F. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998).
http://dx.doi.org/10.1063/1.477267
212.
A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, J. Chem. Phys. 112, 1670 (2000).
http://dx.doi.org/10.1063/1.480732
213.
J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
214.
C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
215.
T. W. Keal and D. J. Tozer, J. Chem. Phys. 123, 121103 (2005).
http://dx.doi.org/10.1063/1.2061227
216.
R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011).
http://dx.doi.org/10.1063/1.3663871
217.
J. P. Perdew, Phys. Rev. Lett. 55, 1665 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.1665
218.
S. K. Ghosh and R. G. Parr, Phys. Rev. A 34, 785 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.785
219.
A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.3761
220.
T. V. Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998).
http://dx.doi.org/10.1063/1.476577
221.
A. D. Becke, J. Chem. Phys. 109, 2092 (1998).
http://dx.doi.org/10.1063/1.476722
222.
R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 13171 (2012).
http://dx.doi.org/10.1039/c2cp42025b
223.
V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003).
http://dx.doi.org/10.1063/1.1626543
224.
A. D. Becke, J. Chem. Phys. 104, 1040 (1996).
http://dx.doi.org/10.1063/1.470829
225.
Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).
http://dx.doi.org/10.1021/jp050536c
226.
L. Ferrighi, B. Hammer, and G. K. H. Madsen, J. Am. Chem. Soc. 131, 10605 (2009).
http://dx.doi.org/10.1021/ja903069x
227.
J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao, A. Ruzsinszky, G. I. Csonka, G. E. Scuseria, and J. Perdew, Phys. Rev. Lett. 111, 106401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106401
228.
A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002).
http://dx.doi.org/10.1063/1.1476309
229.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.026403
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 106, 179902(E) (2011).
http://dx.doi.org/10.1103/physrevlett.106.179902
230.
Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
http://dx.doi.org/10.1063/1.2370993
231.
J. Sun, R. Haunschild, B. Xiao, I. W. Bulik, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys. 138, 044113 (2013).
http://dx.doi.org/10.1063/1.4789414
232.
Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 2715 (2004).
http://dx.doi.org/10.1021/jp049908s
233.
L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000).
http://dx.doi.org/10.1063/1.481336
234.
J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.036402
235.
E. I. Proynov, A. Vela, and D. R. Salahub, Chem. Phys. Lett. 230, 419 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01189-3
236.
H. Bahmann, A. Rodenberg, A. A. Arbuznikov, and M. Kaupp, J. Chem. Phys. 126, 011103 (2007).
http://dx.doi.org/10.1063/1.2429058
237.
Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hiraoo, J. Chem. Phys. 120, 8425 (2004).
http://dx.doi.org/10.1063/1.1688752
238.
J. Toulouse, F. Colonna, and A. Savin, Phys. Rev. A 70, 062505 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.062505
239.
T. Yanai, D. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
240.
I. C. Gerber and J. C. Ángyán, Chem. Phys. Lett. 415, 100 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.08.060
241.
O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006).
http://dx.doi.org/10.1063/1.2409292
242.
J.-W. Song, S. Tokura, T. Sato, M. A. Watson, and K. Hirao, J. Chem. Phys. 127, 154109 (2007).
http://dx.doi.org/10.1063/1.2790017
243.
J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).
http://dx.doi.org/10.1063/1.2834918
244.
D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofini, and C. Adamo, J. Chem. Theory Comput. 4, 123 (2008).
http://dx.doi.org/10.1021/ct700187z
245.
R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011).
http://dx.doi.org/10.1021/jz201170d
246.
C. W. Tsai, Y. C. Su, G. D. Li, and J. D. Chai, Phys. Chem. Chem. Phys. 15, 8352 (2013).
http://dx.doi.org/10.1039/c3cp50441g
247.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
248.
T. M. Henderson, A. F. Izmaylov, G. Scalmani, and G. E. Scuseria, J. Chem. Phys. 131, 044108 (2009).
http://dx.doi.org/10.1063/1.3185673
249.
T. M. Henderson, J. Paier, and G. E. Scuseria, Phys. Status Solidi B Basic Res. 248, 767 (2011).
http://dx.doi.org/10.1002/pssb.201046303
250.
T. M. Henderson, J. Paier, and G. E. Scuseria, in Advanced Calculations for Defects in Materials: Electronic Structure Methods, edited by A. Alkauskas, P. Deák, J. Neugebauer, A. Pasquarello, and C. G. Van de Walle (Wiley-VCH, Weinheim, Germany, 2011), pp. 97110.
251.
A. J. Garza, N. A. Wazzan, A. M. Asiri, and G. E. Scuseria, J. Phys. Chem. A 118, 11787 (2014).
http://dx.doi.org/10.1021/jp510062b
252.
J.-W. Song, K. Yamashita, and K. Hirao, J. Chem. Phys. 135, 071103 (2011).
http://dx.doi.org/10.1063/1.3628522
253.
J. E. Moussa, P. A. Schultz, and J. R. Chelikowsky, J. Chem. Phys. 136, 204117 (2012).
http://dx.doi.org/10.1063/1.4722993
254.
V. Zolyómi and J. Kürti, Phys. Rev. B 92, 035150 (2015).
http://dx.doi.org/10.1103/physrevb.92.035150
255.
J. H. Skone, M. Govoni, and G. Galli, Phys. Rev. B 93, 235106 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.235106
256.
T. M. Henderson, A. F. Izmaylov, G. E. Scuseria, and A. Savin, J. Chem. Theory Comput. 4, 1254 (2008).
http://dx.doi.org/10.1021/ct800149y
257.
R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 3, 117 (2012).
http://dx.doi.org/10.1021/jz201525m
258.
J. Jaramillo, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 1068 (2003).
http://dx.doi.org/10.1063/1.1528936
259.
A. A. Arbuznikov and M. Kaupp, Chem. Phys. Lett. 440, 160 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.04.020
260.
A. A. Arbuznikov, H. Bahmann, and M. Kaupp, J. Phys. Chem. A 113, 11898 (2009).
http://dx.doi.org/10.1021/jp903233q
261.
B. G. Janesko and G. E. Scuseria, Phys. Chem. Chem. Phys. 11, 9677 (2009).
http://dx.doi.org/10.1039/b910905f
262.
X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012).
http://dx.doi.org/10.1007/s10853-012-6570-4
263.
F. Furche, Phys. Rev. B 61, 195120 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195120
264.
H. Eshuis, J. E. Bates, and F. Furche, Theor. Chem. Acc. 131, 1084 (2012).
http://dx.doi.org/10.1007/s00214-011-1084-8
265.
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004);
http://dx.doi.org/10.1103/PhysRevLett.92.246401
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 95, 109902(E) (2005).
http://dx.doi.org/10.1103/physrevlett.95.109902
266.
O. A. Vydrov and T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.063004
267.
D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schröder, and T. Thonhauser, J.Phys.: Condens. Matter 21, 084203 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084203
268.
O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010).
http://dx.doi.org/10.1063/1.3521275
269.
V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.161104
270.
K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
271.
J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235149
272.
É. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
http://dx.doi.org/10.1021/ct900365q
273.
J. Wellendorff, K. T. Lundgaard, K. W. Jacobsen, and T. Bligaard, J. Chem. Phys. 140, 144107 (2014).
http://dx.doi.org/10.1063/1.4870397
274.
N. Mardirossian and M. Head-Gordon, Phys. Chem. Chem. Phys. 16, 9904 (2014).
http://dx.doi.org/10.1039/c3cp54374a
275.
O. A. Vydrov and T. Van Voorhis, J. Chem. Theory Comput. 8, 1929 (2012).
http://dx.doi.org/10.1021/ct300081y
276.
N. Mardirossian and M. Head-Gordon, J. Chem. Phys. 142, 074111 (2015).
http://dx.doi.org/10.1063/1.4907719
277.
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
278.
V. I. Anisimov, F. Aryasetiawan, and A. I. Liechtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
http://dx.doi.org/10.1088/0953-8984/9/4/002
279.
S. L. Dudarev, A. I. Liechtenstein, M. R. Castell, G. A. D. Briggs, and A. P. Sutton, Phys. Rev. B 56, 4900 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.4900
280.
A. Rohrbach, J. Hafner, and G. J. Kresse, J. Phys. B 15, 979 (2003).
http://dx.doi.org/10.1088/0953-8984/15/6/325
281.
N. J. Mosey and E. A. Carter, Phys. Rev. B 76, 155123 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155123
282.
N. J. Mosey, P. Liao, and E. A. Carter, J. Chem. Phys. 129, 014103 (2008).
http://dx.doi.org/10.1063/1.2943142
283.
B. Himmetoglu, A. Floris, S. De Gironcoli, and M. Cococcioni, Int. J. Quantum Chem. 114, 14 (2014).
http://dx.doi.org/10.1002/qua.24521
284.
P. Verma and D. G. Truhlar, Theor. Chem. Acc. 135, 182 (2016).
http://dx.doi.org/10.1007/s00214-016-1927-4
285.
J. Hubbard, Proc. R. Soc. London, Ser. A 277, 455 (1964).
http://dx.doi.org/10.1098/rspa.1964.0019
286.
R. A. Friesner, E. H. Knoll, and Y. Cao, J. Chem. Phys. 125, 124107 (2006).
http://dx.doi.org/10.1063/1.2263795
287.
E. H. Knoll and R. A. Friesner, J. Phys. Chem. B 110, 18787 (2006).
http://dx.doi.org/10.1021/jp0619888
288.
D. Rinaldo, L. Tian, J. N. Harvey, and R. A. Friesner, J. Chem. Phys. 129, 164108 (2008).
http://dx.doi.org/10.1063/1.2974101
289.
Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004).
http://dx.doi.org/10.1021/jp048147q
290.
Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005).
http://dx.doi.org/10.1021/ct049851d
291.
Y. Zhao and D. G. Truhlar, Org. Lett. 8, 57535755 (2006).
http://dx.doi.org/10.1021/ol062318n
292.
Y. Zhao and D. G. Truhlar, Org. Lett. 9, 19671970 (2007).
http://dx.doi.org/10.1021/ol0705548
293.
S. Grimme, J. Antony, T. Schwabe, and C. Mück-Lichtenfeld, Org. Biomol. Chem. 5, 741 (2007).
http://dx.doi.org/10.1039/B615319B
294.
P. E. M. Siegbahn, M. R. A. Blomberg, and S.-L. Chen, J. Chem. Theory Comput. 6, 2040 (2010).
http://dx.doi.org/10.1021/ct100213e
295.
M. D’Amore, R. Credendino, P. H. M. Budzelaar, M. Causá, and V. Busico, J. Catal. 286, 103 (2012).
http://dx.doi.org/10.1016/j.jcat.2011.10.018
296.
H. S. Yu, X. He, and D. G. Truhlar, J. Chem. Theory Comput. 12, 1280 (2016).
http://dx.doi.org/10.1021/acs.jctc.5b01082
297.
H. S. Yu, X. He, S. Li, and D. G. Truhlar, Chem. Sci. 7, 5032 (2016);
http://dx.doi.org/10.1039/C6SC00705H
H. S. Yu, X. He, S. Li, and D. G. Truhlar, Chem. Sci. 7, 6278(E) (2016).
http://dx.doi.org/10.1039/C6SC90044E
298.
Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).
http://dx.doi.org/10.1021/ct800246v
299.
Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
300.
J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
301.
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
302.
J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 5, 808 (2009).
http://dx.doi.org/10.1021/ct800568m
303.
J. Zheng and D. G. Truhlar, Phys. Chem. Chem. Phys. 12, 7782 (2010).
http://dx.doi.org/10.1039/b927504e
304.
X. Xu, I. M. Alecu, and D. G. Truhlar, J. Chem. Theory Comput. 7, 1667 (2011).
http://dx.doi.org/10.1021/ct2001057
305.
I. M. Alecu and D. G. Truhlar, J. Phys. Chem. A 115, 2811 (2011).
http://dx.doi.org/10.1021/jp110024e
306.
P. Seal, E. Papajak, and D. G. Truhlar, J. Phys. Chem. Lett. 3, 264 (2012).
http://dx.doi.org/10.1021/jz201546e
307.
J. Zheng and D. G. Truhlar, Faraday Discuss. 157, 59 (2012).
http://dx.doi.org/10.1039/c2fd20012k
308.
P. Seal, G. Oyedepo, and D. G. Truhlar, J. Phys. Chem. A 117, 275 (2013).
http://dx.doi.org/10.1021/jp310910f
309.
J. L. Bao, R. Meana-Pañeda, and D. G. Truhlar, Chem. Sci. 6, 5866 (2015).
http://dx.doi.org/10.1039/C5SC01848J
310.
J. Zheng, G. Odeyepo, and D. G. Truhlar, J. Phys. Chem. A 117, 12182 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b06121
311.
J. L. Bao, P. Sripa, and D. G. Truhlar, Phys. Chem. Chem. Phys. 18, 1032 (2016).
http://dx.doi.org/10.1039/C5CP05780A
312.
Y.-S. Lin, G.-D. Li, S.-P. Mao, and J.-D. Chai, J. Chem. Theory Comput. 9, 263 (2013).
http://dx.doi.org/10.1021/ct300715s
313.
Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2008).
http://dx.doi.org/10.1063/1.2912068
314.
B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
315.
R. Peverati, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. Lett. 2, 19911997 (2011).
http://dx.doi.org/10.1021/jz200616w
316.
C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1997).
http://dx.doi.org/10.1063/1.475428
317.
R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, Int. J. Quantum Chem. 114, 1287 (2014).
http://dx.doi.org/10.1002/qua.24658
318.
M. P. Marder, Condensed Matter Physics (Wiley, New York, 2000).
319.
M. Grüning and X. Gonze, Phys. Rev. B 76, 035126 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.035126
320.
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
321.
A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).
http://dx.doi.org/10.1103/PhysRevA.21.1561
322.
M. E. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (World Scientific, Singapore, 1995), pp. 155.
323.
P. L. Altick and A. E. Glassgold, Phys. Rev. 133, 632 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A632
324.
T. H. Dunning and V. McKoy, J. Chem. Phys. 47, 19735 (1967).
http://dx.doi.org/10.1063/1.1712158
325.
D. G. Truhlar, Int. J. Quantum Chem. 7, 807 (1973).
http://dx.doi.org/10.1002/qua.560070416
326.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill Inc., 1989).
327.
S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, J. Chem. Phys. 103, 9347 (1995).
http://dx.doi.org/10.1063/1.469994
328.
M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1212
329.
R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00440-X
330.
F. Furche, J. Chem. Phys. 114, 5982 (2001).
http://dx.doi.org/10.1063/1.1353585
331.
F. Furche and R. Ahlrichs, J. Chem. Phys. 117, 7433 (2002).
http://dx.doi.org/10.1063/1.1508368
332.
I. Tamm, J. Phys. (Moscow) 9, 449 (1945).
333.
S. M. Dancoff, Phys. Rev. 78, 382 (1950).
http://dx.doi.org/10.1103/PhysRev.78.382
334.
A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).
http://dx.doi.org/10.1021/cr0505627
335.
M. E. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143803
336.
D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofini, and C. Adamo, J. Chem. Theory Comput. 4, 123 (2008).
http://dx.doi.org/10.1021/ct700187z
337.
D. Jacquemin, E. A. Perpete, I. Ciofini, and C. Adamo, Acc. Chem. Res. 42, 326 (2009).
http://dx.doi.org/10.1021/ar800163d
338.
D. Jacquemin, V. Wathelet, E. A. Perpète, and C. Adamo, J. Chem. Theory Comput. 5, 2420 (2009).
http://dx.doi.org/10.1021/ct900298e
339.
D. Jacquemin, E. A. Perpète, I. Ciofini, C. Adamo, R. Valero, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 6, 2071 (2010).
http://dx.doi.org/10.1021/ct100119e
340.
D. Jacquemin, B. Mennucci, and C. Adamo, Phys. Chem. Chem. Phys. 13, 16987 (2011).
http://dx.doi.org/10.1039/c1cp22144b
341.
D. Jacquemin, A. Planchat, C. Adamo, and B. Mennucci, J. Chem. Theory Comput. 8, 2359 (2012).
http://dx.doi.org/10.1021/ct300326f
342.
C. Adamo and D. Jacquemin, Chem. Soc. Rev. 42, 845 (2013).
http://dx.doi.org/10.1039/C2CS35394F
343.
A. D. Laurent and D. Jacquemin, Int. J. Quantum Chem. 113, 2019 (2013).
http://dx.doi.org/10.1002/qua.24438
344.
M. Caricato, G. W. Trucks, M. J. Frisch, and K. B. Wiberg, J. Chem. Theory Comput. 6, 370 (2010).
http://dx.doi.org/10.1021/ct9005129
345.
M. Isegawa, R. Peverati, and D. G. Truhlar, J. Chem. Phys. 137, 244104 (2012).
http://dx.doi.org/10.1063/1.4769078
346.
M. Isegawa and D. G. Truhlar, J. Chem. Phys. 138, 134111 (2013).
http://dx.doi.org/10.1063/1.4798402
347.
I. Seidu, M. Krykunov, and T. Ziegler, J. Chem. Theory Comput. 11, 4041 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00298
348.
M. R. Silva-Junior, M. Schreiber, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 129, 104103 (2008).
http://dx.doi.org/10.1063/1.2973541
349.
E. N. Brothers, A. F. Izmaylov, J. O. Ormand, V. Barone, and G. E. Scuseria, J. Chem. Phys. 129, 011102 (2008).
http://dx.doi.org/10.1063/1.2955460
350.
M. Petersilka and E. K. U. Gross, Laser Phys. 9, 105 (1999).
351.
S. Tussupbayev, N. Govind, K. Lopata, and C. J. Cramer, J. Chem. Theory Comput. 11, 1102 (2015).
http://dx.doi.org/10.1021/ct500763y
352.
H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).
http://dx.doi.org/10.1063/1.458814
353.
J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
http://dx.doi.org/10.1063/1.464746
354.
K. Andersson, P.-Å Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
http://dx.doi.org/10.1063/1.462209
355.
M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
http://dx.doi.org/10.1063/1.475855
356.
L. González, D. Escudero, and L. Serrano-Andrés, ChemPhysChem 13, 28 (2012).
http://dx.doi.org/10.1002/cphc.201100200
357.
R. van Meer, O. V. Gritsenko, and E. J. Baerends, J. Chem. Theory Comput. 10, 4432 (2014).
http://dx.doi.org/10.1021/ct500727c
358.
R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.2421
359.
D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998).
http://dx.doi.org/10.1063/1.477711
360.
S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.3
361.
S. Hirata, C.-G. Zhan, E. Aprà, T. L. Windus, and D. A. Dixon, J. Phys. Chem. A 107, 10154 (2003).
http://dx.doi.org/10.1021/jp035667x
362.
M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys. 116, 9591 (2002).
http://dx.doi.org/10.1063/1.1476007
363.
O. V. Gritsenko, P. R. T. Schipper, and E. J. Baerends, Chem. Phys. Lett. 302, 199 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00128-1
364.
A. P. Gaiduk, D. Mizzi, and V. N. Staroverov, Phys. Rev. A 86, 052518 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.052518
365.
A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev. Lett. 108, 253005 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.253005
366.
S. L. Li and D. G. Truhlar, J. Chem. Phys. 141, 104106 (2014).
http://dx.doi.org/10.1063/1.4894522
367.
H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001).
http://dx.doi.org/10.1063/1.1383587
368.
K. A. Nguyen, P. N. Day, and R. Pachter, J. Chem. Phys. 135, 074109 (2011).
http://dx.doi.org/10.1063/1.3624889
369.
J.-W. Song, T. Hirosawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 126, 154105 (2007).
http://dx.doi.org/10.1063/1.2721532
370.
S. L. Li and D. G. Truhlar, J. Chem. Theory Comput. 11, 3123 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00369
371.
E. J. Baerends, O. V. Gritsenko, and R. van Meer, Phys. Chem. Chem. Phys. 15, 16408 (2013).
http://dx.doi.org/10.1039/c3cp52547c
372.
K. Yang, R. Peverati, D. G. Truhlar, and R. Valero, J. Chem. Phys. 135, 044118 (2011).
http://dx.doi.org/10.1063/1.3607312
373.
A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
http://dx.doi.org/10.1063/1.1590951
374.
A. S. Tiwary, K. Datta, and A. K. Mukherjee, J. Comput. Theory Chem. 1068, 123 (2015).
http://dx.doi.org/10.1016/j.comptc.2015.06.033
375.
N. Mardirrossian, J. A. Parkhill, and M. Head-Gordon, Phys. Chem. Chem.Phys. 13, 19325 (2011).
http://dx.doi.org/10.1039/c1cp21635j
376.
R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 1136311370 (2012).
http://dx.doi.org/10.1039/c2cp41295k
377.
M. J. G. Peach, P. Benfield, T. Helgaker, and D. J. Tozer, J. Chem.Phys. 128, 044118 (2008).
http://dx.doi.org/10.1063/1.2831900
378.
R. Li, J. Zheng, and D. G. Truhlar, Phys. Chem. Chem. Phys. 12, 12697 (2010).
http://dx.doi.org/10.1039/c0cp00549e
379.
T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, and F. Wang, J. Mol.Struct.: THEOCHEM 914, 106 (2009).
http://dx.doi.org/10.1016/j.theochem.2009.04.021
380.
T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, and F. Wang, J. Chem. Phys. 130, 154102 (2009).
http://dx.doi.org/10.1063/1.3114988
381.
T. Ziegler and M. Krykunov, J. Chem. Phys. 133, 074104 (2010).
http://dx.doi.org/10.1063/1.3471449
382.
J. Cullen, M. Krykunov, and T. Ziegler, Chem. Phys. 391, 11 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.05.021
383.
T. Ziegler, M. Krykunov, and J. Cullen, J. Chem. Phys. 136, 124107 (2012).
http://dx.doi.org/10.1063/1.3696967
384.
M. Krykunov, S. Grimme, and T. Ziegler, J. Chem. Theory Comput. 8, 4434 (2012).
http://dx.doi.org/10.1021/ct300372x
385.
H. C. Longuet-Higgins, Proc. R. Soc. London, Ser. A 344, 147 (1975).
http://dx.doi.org/10.1098/rspa.1975.0095
386.
C. A. Mead, J. Chem. Phys. 70, 2276 (1979).
http://dx.doi.org/10.1063/1.437733
387.
A. W. Jasper, C. A. Kendrick, C. A. Mead, and D. G. Truhlar, in Modern Trends in Chemical Reaction Dynamics: Experiment Theory (Part 1), edited by X. Yang and K. Liu (World Scientific, Singapore, 2004), p. 329.
388.
B. G. Levine, C. Ko, J. Quenneville, and T. J. Martínez, Mol. Phys. 104, 1039 (2006).
http://dx.doi.org/10.1080/00268970500417762
389.
S. L. Li, A. V. Marenich, X. Xu, and D. G. Truhlar, J. Phys. Chem. Lett. 5, 322 (2013).
http://dx.doi.org/10.1021/jz402549p
390.
N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys. 120, 5932 (2004).
http://dx.doi.org/10.1063/1.1651060
391.
R. J. Cave, F. Zhang, N. T. Maitra, and K. Burke, Chem. Phys. Lett. 389, 39 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.051
392.
G. Mazur and R. Włodarczyk, J. Comput. Chem. 30, 811 (2009).
http://dx.doi.org/10.1002/jcc.21102
393.
P. Elliott, S. Goldson, C. Canahui, and N. T. Maitra, Chem. Phys. 391, 110 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.03.020
394.
Y. Shao, M. Head-Gordon, and A. I. Krylov, J. Chem. Phys. 118, 4807 (2003).
http://dx.doi.org/10.1063/1.1545679
395.
F. Wang and T. Ziegler, J. Chem. Phys. 121, 12191 (2004).
http://dx.doi.org/10.1063/1.1821494
396.
F. Wang and T. Ziegler, J. Chem. Phys. 122, 074109 (2005).
http://dx.doi.org/10.1063/1.1844299
397.
F. Wang and T. Ziegler, Int. J. Quantum Chem. 106, 2545 (2006).
http://dx.doi.org/10.1002/qua.21050
398.
D. J. Tozer and N. C. Handy, Phys. Chem. Chem. Phys. 2, 2117 (2000).
http://dx.doi.org/10.1039/a910321j
399.
M. Huix-Rotllant, A. Ipatov, A. Rubio, and M. E. Casida, Chem. Phys. 391, 120 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.03.019
400.
X. Xu, K. R. Yang, and D. G. Truhlar, J. Chem. Theory Comput. 10, 2070 (2014).
http://dx.doi.org/10.1021/ct500128s
401.
J. H. Starcke, M. Wormit, J. Schirmer, and A. Dreuw, Chem. Phys. 329, 39 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.07.020
402.
D. R. Rohr, K. Pernal, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 129, 164105 (2008).
http://dx.doi.org/10.1063/1.2998201
403.
D. R. Rohr and K. Pernal, J. Chem. Phys. 135, 074104 (2011).
http://dx.doi.org/10.1063/1.3624609
404.
A. Marenich, C. J. Cramer, and D. G. Truhlar, J. Chem. Theory Comput. 9, 36493659 (2013).
http://dx.doi.org/10.1021/ct400329u
405.
A. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 119, 958967 (2015).
http://dx.doi.org/10.1021/jp506293w
406.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, C. A. Guido, B. Mennucci, G. Scalmani, and M. J. Frisch, Chem. Sci. 2, 2143 (2011).
http://dx.doi.org/10.1039/c1sc00313e
407.
C. A. Guido, D. Jacquemin, C. Adamo, and B. Mennucci, J. Chem. Theory Comput. 11, 5782 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00679
408.
M. Parac, M. Doerr, C. M. Marian, and W. Thiel, J. Comput. Chem. 31, 90 (2010).
http://dx.doi.org/10.1002/jcc.21233
409.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
410.
D. Porezag, M. R. Pederson, and A. Y. Liu, Phys. Rev. B 60, 14132 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.14132
411.
G. Lippert, J. Hutter, and M. Parrinello, Theor. Chem. Acc. 103, 124 (1999).
http://dx.doi.org/10.1007/s002140050523
412.
X. Xu and D. G. Truhlar, J. Chem. Theory Comput. 7, 2766 (2011).
http://dx.doi.org/10.1021/ct200234r
413.
K. Lejaeghere et al., Science 351, 1415 (2016).
http://dx.doi.org/10.1126/science.aad3000
414.
X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.07.007
415.
J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, Comput. Phys. Commun. 183, 1269 (2012).
http://dx.doi.org/10.1016/j.cpc.2011.12.006
416.
Y. Hinuma, A. Grüneis, G. Kresse, and F. Oba, Phys. Rev. B 90, 155405 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.155405
417.
J. L. Bao, H. S. Yu, K. Duanmu, M. Makeev, X. Xu, and D. G. Truhlar, ACS Catal. 5, 2070 (2015).
http://dx.doi.org/10.1021/cs501675t
418.
Y. Zhao and D. G. Truhlar, Rev. Mineral. Geochem. 71, 19 (2010).
http://dx.doi.org/10.2138/rmg.2010.71.2
419.
E. A. Moore, Annu. Rep. Prog. Chem., Sect. A 107, 459 (2011).
http://dx.doi.org/10.1039/c1ic90021h
420.
J. Ho and M. L. Coote, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 649 (2011).
http://dx.doi.org/10.1002/wcms.43
421.
M. E. Alberto, T. Marino, N. Russo, E. Sicilia, and M. Toscano, Phys. Chem. Chem. Phys. 14, 14943 (2012).
http://dx.doi.org/10.1039/c2cp41836c
422.
A. C. Tsipis, Coord. Chem. Rev. 272, 1 (2014).
http://dx.doi.org/10.1016/j.ccr.2014.02.023
423.
K. Arumugam and U. Becker, Minerals 4, 345 (2014).
http://dx.doi.org/10.3390/min4020345
424.
T. Sperger, I. A. Sanhueza, I. Kalvet, and F. Schoenebeck, Chem. Rev. 115, 9532 (2015).
http://dx.doi.org/10.1021/acs.chemrev.5b00163
425.
X. He, H. S. Yu, and D. G. Truhlar (unpublished results).
426.
B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A 104, 4811 (2000).
http://dx.doi.org/10.1021/jp000497z
427.
Y. Zhao, N. González-García, and D. G. Truhlar, J. Phys. Chem. A 109, 2012 (2005);
http://dx.doi.org/10.1021/jp045141s
Y. Zhao, N. Gonzlez-Garca, and D. G. Truhlar, J. Phys. Chem. A 110, 4942(E) (2006).
http://dx.doi.org/10.1021/jp061040d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/13/10.1063/1.4963168
Loading
/content/aip/journal/jcp/145/13/10.1063/1.4963168
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/13/10.1063/1.4963168
2016-10-05
2016-12-03

Abstract

This article presents a perspective on Kohn-Sham density functional theory (KS-DFT) for electronic structure calculations in chemical physics. This theory is in widespread use for applications to both molecules and solids. We pay special attention to several aspects where there are both concerns and progress toward solutions. These include: 1. The treatment of open-shell and inherently multiconfigurational systems (the latter are often called multireference systems and are variously classified as having strong correlation, near-degeneracy correlation, or high static correlation; KS-DFT must treat these systems with broken-symmetry determinants). 2. The treatment of noncovalent interactions. 3. The choice between developing new functionals by parametrization, by theoretical constraints, or by a combination. 4. The ingredients of the exchange-correlation functionals used by KS-DFT, including spin densities, the magnitudes of their gradients, spin-specific kinetic energy densities, nonlocal exchange (Hartree-Fock exchange), nonlocal correlation, and subshell-dependent corrections (DFT+U). 5. The quest for a universal functional, where we summarize some of the success of the latest Minnesota functionals, namely MN15-L and MN15, which were obtained by optimization against diverse databases. 6. Time-dependent density functional theory, which is an extension of DFT to treat time-dependent problems and excited states. The review is a snapshot of a rapidly moving field, and—like Marcel Duchamp—we hope to convey progress in a stimulating way.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/13/1.4963168.html;jsessionid=kBVw2lC1pmRY7RmyHiw021GD.x-aip-live-06?itemId=/content/aip/journal/jcp/145/13/10.1063/1.4963168&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/13/10.1063/1.4963168&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/13/10.1063/1.4963168'
Right1,Right2,Right3,