Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
B. J. Finlayson-Pitts and J. N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere—Theory, Experiments, and Applications (Academic Press, San Diego, CA, USA, 2000).
A. D. Kiel and P. B. Shepson, J. Geophys. Res.: Atmos. 111, D17303, doi:10.1029/2006jd007119 (2006).
P. J. Tackett, A. E. Cavender, A. D. Kiel, P. B. Shepson, J. W. Bottenheim, S. Morin, J. Deary, A. Steffen, and C. Doerge, J. Geophys. Res. 112, D07306, doi:10.1029/2006JD007785 (2007).
H. D. Osthoff, J. M. Roberts, A. R. Ravishankara, E. J. Williams, B. M. Lerner, R. Sommariva, T. S. Bates, D. Coffman, P. K. Quinn, and J. E. Dibb, Nat. Geosci. 1, 324 (2008).
R. Atkinson and J. Arey, Atmos. Environ. 37, 197 (2003).
C. A. Taatjes, Int. Rev. Phys. Chem. 18, 419 (1999).
E. W. Kaiser and T. J. Wallington, J. Phys. Chem. 100, 9788 (1996).
J. S. Pilgrim and C. A. Taatjes, J. Phys. Chem. A 101, 5776 (1997).
M. L. Poutsma, Science 157, 997 (1967).
F. Freeman, Chem. Rev. 75, 439 (1975).
F. S. C. Lee and F. S. Rowland, J. Phys. Chem. 81, 1222 (1977).
F. S. C. Lee and F. S. Rowland, J. Phys. Chem. 84, 1876 (1980).
R. Subramonia Iyer, P. J. Roger, and F. S. Rowland, J. Phys. Chem. 87, 3799 (1983).
R. Subramonia Iye, C.-Y. Chen, and F. S. Rowland, J. Phys. Chem. 89, 2042 (1985).
R. Subramonia Iye and F. S. Rowland, J. Phys. Chem. 89, 3730 (1985).
P. Brana, B. Menendez, T. Fernandez, and J. A. Sordo, J. Phys. Chem. A 104, 10842 (2000).
P. Braña and J. A. Sordo, J. Am. Chem. Soc. 123, 10348 (2001).
P. Braña and J. A. Sordo, J. Comput. Chem. 24, 2044 (2003).
B. Joalland, Y. Shi, A. Kamasah, A. G. Suits, and A. M. Mebel, Nat. Commun. 5, 4064 (2014).
G. Chu, J. Chen, M. Shui, J. Xin, F. Liu, L. Sheng, T. Xu, L. Cao, and Y. Gu, Int. J. Mass Spectrom. 375, 1 (2015).
B. Joalland, R. D. van Camp, Y. Shi, N. Patel, and A. G. Suits, J. Phys. Chem. A 117, 7589 (2013).
T. J. Preston, G. T. Dunning, and A. J. Orr-Ewing, J. Phys. Chem. A 118, 5595 (2014).
K. S. Chen, I. H. Elson, and J. K. Kochi, J. Am. Chem. Soc. 95, 5341 (1973).
R. V. Lloyd and D. E. Wood, J. Am. Chem. Soc. 97, 5986 (1975).
M. Bahou, C.-W. Huang, Y.-L. Huang, J. Glatthaar, Y.-P. Lee, and J. Chin, Chem. Soc. 57, 771 (2010).
M. Bahou, P. Das, Y.-F. Lee, Y.-J. Wu, and Y.-P. Lee, Phys. Chem. Chem. Phys. 16, 2200 (2014).
P. L. Raston and D. T. Anderson, J. Chem. Phys. 126, 021106 (2007).
B. Golec and Y.-P. Lee, J. Chem. Phys. 135, 174302 (2011).
J. C. Amicangelo, B. Golec, M. Bahou, and Y.-P. Lee, Phys. Chem. Chem. Phys. 14, 1014 (2012).
J. Amicangelo and Y.-P. Lee, J. Phys. Chem. Lett. 1, 2956 (2010).
M. Bahou, J.-Y. Wu, K. Tanaka, and Y.-P. Lee, J. Chem. Phys. 137, 084310 (2012).
Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, Science 311, 365 (2006).
P. L. Raston and D. T. Anderson, Phys. Chem. Chem. Phys. 8, 3124 (2006).
S. C. Kettwich, P. L. Raston, and D. T. Anderson, J. Phys. Chem. A 113, 7621 (2009).
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, edited by J. F. Dobson, G. Vignale, and M. P. Das (Plenum, New York, USA, 1998).
R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, USA, 2009.
T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated Volume I (National Bureau of Standards, 1972), pp. 1160.

Data & Media loading...


Article metrics loading...



The addition reactions of chlorine atom with isobutene (-CH) in solid -hydrogen (-H) were investigated with infrared (IR) absorption spectra. When a -H matrix containing Cl and isobutene was irradiated with ultraviolet light at 365 nm, intense lines in a set at 534.5, 1001.0, 1212.9, 1366.0, 2961.6, and 2934.7 cm−1, and several weaker others due to the 1-chloro-2-methyl-2-propyl radical, C(CH)CHCl, and those in a second set including intense ones at 642.7, 799.2, 1098.2, 1371.8, and 3027.3 cm−1 due to the 2-chloro-2-methylpropyl radical, CHC(CH)Cl, appeared; the ratio of C(CH)CHCl to CHC(CH)Cl was approximately (3 ± 1):1. The observed wavenumbers and relative intensities agree with the vibrational wavenumbers and IR intensities predicted with the B3PW91/aug-cc-pVTZ method. That the Cl atom adds to both carbons of the C=C bond of isobutene with the terminal site slightly favored is consistent with the energies of products predicted theoretically, but is in contrast to the reaction of Cl + propene in solid -H in which the addition of Cl to mainly the central C atom was previously reported. The role of the -H matrix in affecting the reaction paths is discussed. Absorption lines of the complex -CH⋅Cl and the dichloro-product -1,2-dichloro-2-methylpropane, -CHClCCl(CH), are also characterized.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd