Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/14/10.1063/1.4964410
1.
L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed. (Cornell University Press, Ithaca, 1960).
2.
A. Warshel and M. Levitt, J. Mol. Biol. 103, 227249 (1976).
http://dx.doi.org/10.1016/0022-2836(76)90311-9
3.
B. Honig and M. Karplus, Nature 229, 558 (1971).
http://dx.doi.org/10.1038/229558a0
4.
A. Warshel and M. Karplus, J. Am. Chem. Soc. 96, 56775689 (1974).
http://dx.doi.org/10.1021/ja00825a001
5.
M. R. A. Blomberg, T. Borowski, F. Himo, R. Z. Liao, and P. E. M. Siegbahn, Chem. Rev. 114, 36013658 (2014).
http://dx.doi.org/10.1021/cr400388t
6.
G. Monard and K. M. Merz, J. Acc. Chem. Res. 32, 904911 (1999).
http://dx.doi.org/10.1021/ar970218z
7.
R. A. Friesner and V. Guallar, Annu. Rev. Phys. Chem. 56, 389427 (2005).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094410
8.
H. M. Senn and W. Thiel, Angew. Chem., Int. Ed. 48, 11981229 (2009).
http://dx.doi.org/10.1002/anie.200802019
9.
J. L. Gao, S. H. Ma, D. T. Major, K. Nam, J. Z. Pu, and D. G. Truhlar, Chem. Rev. 106, 31883209 (2006).
http://dx.doi.org/10.1021/cr050293k
10.
M. P. Fruschicheva, M. J. L. Mills, P. Schopf, M. K. Singh, R. B. Prasad, and A. Warshel, Curr. Opin. Chem. Biol. 21, 5662 (2014).
http://dx.doi.org/10.1016/j.cbpa.2014.03.022
11.
E. Brunk and U. Rothlisberger, Chem. Rev. 115, 62176263 (2015).
http://dx.doi.org/10.1021/cr500628b
12.
L. W. Chung, W. M. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. F. Ke, F. Y. Liu, H. B. Li, L. N. Ding, and K. Morokuma, Chem. Rev. 115, 56785769 (2015).
http://dx.doi.org/10.1021/cr5004419
13.
M. W. van der Kamp and A. J. Mulholland, Biochem. 52, 27082728 (2013).
http://dx.doi.org/10.1021/bi400215w
14.
S. Hayashi, H. Ueno, A. R. Shaikh, M. Umemura, M. Kamiya, Y. Ito, M. Ikeguchi, Y. Komoriya, R. Iino, and H. Noji, J. Am. Chem. Soc. 134, 84478454 (2012).
http://dx.doi.org/10.1021/ja211027m
15.
E. Bozkurt, N. Ashari, N. Browning, E. Brunk, P. Campomanes, M. A. S. Perez, and U. Rothlisberger, Chimia 68, 642647 (2014).
http://dx.doi.org/10.2533/chimia.2014.642
16.
E. Brunk, M. Neri, I. Tavernelli, V. Hatzimanikatis, and U. Rothlisberger, Biotech. Bioeng. 109, 572582 (2012).
http://dx.doi.org/10.1002/bit.23334
17.
A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
http://dx.doi.org/10.1063/1.4869598
18.
C. D. Sherrill, J. Chem. Phys. 132, 110902 (2010).
http://dx.doi.org/10.1063/1.3369628
19.
K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
20.
N. T. Maitra, J. Chem. Phys. 144, 220901 (2016).
http://dx.doi.org/10.1063/1.4953039
21.
A. Warshel and R. P. Bora, J. Chem. Phys. 144, 180901 (2016).
http://dx.doi.org/10.1063/1.4947037
22.
S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller III, Annu. Rev. Phys. Chem. 64, 387413 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
23.
R. Kapral, Annu. Rev. Phys. Chem. 57, 129157 (2006).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104702
24.
W. H. Miller, Annu. Rev. Phys. Chem. 65, 119 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040513-103720
25.
S. Hammes-Schiffer and A. A. Stuchebrukhov, Chem. Rev. 110, 69396960 (2010).
http://dx.doi.org/10.1021/cr1001436
26.
C. Clementi, H. Nymeyer, and J. N. Onuchic, J. Mol. Biol. 298, 937953 (2000).
http://dx.doi.org/10.1006/jmbi.2000.3693
27.
J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes, Annu. Rev. Phys. Chem. 48, 545600 (1997).
http://dx.doi.org/10.1146/annurev.physchem.48.1.545
28.
P. C. Whitford, J. K. Noel, S. Gosavi, A. Schug, K. Y. Sanbonmatsu, and J. N. Onuchic, Proteins: Struct., Funct., Bioinf. 75, 430441 (2009).
http://dx.doi.org/10.1002/prot.22253
29.
C. Clementi, Curr. Opin. Struct. Biol. 18, 1015 (2008).
http://dx.doi.org/10.1016/j.sbi.2007.10.005
30.
J. W. Ponder, C. J. Wu, P. Y. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114, 25492564 (2010).
http://dx.doi.org/10.1021/jp910674d
31.
P. E. M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B. Roux, and A. D. MacKerell, Jr., J. Chem. Theory Comput. 9, 54305449 (2013).
http://dx.doi.org/10.1021/ct400781b
32.
A. Albaugh, H. A. Boateng, R. T. Bradshaw, O. Demerdash, J. Dziedzic, Y. Z. Mo, D. T. Margul, J. Swails, Q. Zeng, D. A. Case, P. Eastman, J. W. Essex, M. Head-Gordon, V. S. Pande, J. W. Pnder, Y. H. Shao, C.-K. Skylaris, I. T. Todorov, M. E. Tuckerman, and T. Head-Gordon, J. Phys. Chem. B 120, 98119832 (2016).
http://dx.doi.org/10.1021/acs.jpcb.6b06414
33.
L. Lagardere, F. Lipparini, E. Polack, B. Stamm, E. Chances, M. Schnieders, P. Y. Ren, Y. Maday, and J. P. Piquemal, J. Chem. Theory Comput. 11, 25892599 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00171
34.
R. E. Duke, O. N. Starovoytov, J. P. Piquemal, and G. A. Cisneros, J. Chem. Theory Comput. 10, 13611365 (2014).
http://dx.doi.org/10.1021/ct500050p
35.
A. J. Stone, The Theory of Intermolecular Forces (Oxford University Press, Oxford, UK, 1997).
36.
P. Hobza and J. Rezac, Chem. Rev. 116, 49114912 (2016).
http://dx.doi.org/10.1021/acs.chemrev.6b00247
37.
B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94, 18871930 (1994).
http://dx.doi.org/10.1021/cr00031a008
38.
C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 1966319688 (2011).
http://dx.doi.org/10.1039/c1cp22168j
39.
G. A. Cisneros, K. T. Wikfeldt, L. Ojamäe, J. B. Lu, Y. Xu, H. Torabifard, A. P. Bartok, G. Csanyi, V. Molinero, and F. Paesani, Chem. Rev. 116, 75017528 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00644
40.
Y. Q. Zheng and Q. Cui, “Microscopic mechanisms that govern the titration response and pKa values of buried residues in staphylococcal nuclease mutants,” Proteins: Struct., Funct., Bioinf. (submitted).
41.
V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, Proteins: Struct., Funct., Bioinf. 65, 712725 (2006).
http://dx.doi.org/10.1002/prot.21123
42.
D.-W. Li and R. Brüschweiler, Angew. Chem., Int. Ed. 49, 67786780 (2010).
http://dx.doi.org/10.1002/anie.201001898
43.
J. Huang and A. D. MacKerell, Jr., J. Comput. Chem. 34, 21352145 (2013).
http://dx.doi.org/10.1002/jcc.23354
44.
A. Li, A. Voronin, A. T. Fenley, and M. K. Gilson, J. Phys. Chem. B 120, 86688684 (2016).
http://dx.doi.org/10.1021/acs.jpcb.6b03392
45.
R. T. Bradshaw and J. W. Essex, J. Chem. Theory Comput. 12, 38713883 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00276
46.
K. Kitaura and K. Morokuma, Int. J. Quantum Chem. 10, 325340 (1976).
http://dx.doi.org/10.1002/qua.560100211
47.
P. S. Bagus, K. Hermann, and C. W. Bauschlicher, Jr., J. Chem. Phys. 80, 43784386 (1984).
http://dx.doi.org/10.1063/1.447215
48.
W. J. Stevens and W. H. Fink, Chem. Phys. Lett. 139, 1522 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80143-4
49.
A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899926 (1988).
http://dx.doi.org/10.1021/cr00088a005
50.
Y. R. Mo, J. L. Gao, and S. D. Peyerimhoff, J. Chem. Phys. 112, 55305538 (2000).
http://dx.doi.org/10.1063/1.481185
51.
R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, and M. Head-Gordon, J. Phys. Chem. A 111, 87538765 (2007).
http://dx.doi.org/10.1021/jp073685z
52.
Q. Wu, P. W. Ayers, and Y. K. Zhang, J. Chem. Phys. 131, 164112 (2009).
http://dx.doi.org/10.1063/1.3253797
53.
K. U. Lao and J. M. Herbert, J. Chem. Theory Comput. 12, 25692582 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00155
54.
N. Gresh, G. A. Cisneros, T. A. Darden, and J.-P. Piguemal, J. Chem. Theory Comput. 3, 19601986 (2007).
http://dx.doi.org/10.1021/ct700134r
55.
A. Hesselmann, G. Jansen, and M. Schütz, J. Chem. Phys. 122, 014103 (2005).
http://dx.doi.org/10.1063/1.1824898
56.
E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, J. M. Turney, and H. F. Schaefer III, J. Chem. Phys. 135, 174107 (2011).
http://dx.doi.org/10.1063/1.3656681
57.
T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014).
http://dx.doi.org/10.1063/1.4867135
58.
L. A. Burns, M. S. Marshall, and C. D. Sherrill, J. Chem. Phys. 141, 234111 (2014).
http://dx.doi.org/10.1063/1.4903765
59.
K. U. Lao, R. Schaffer, G. Jansen, and J. M. Herbert, J. Chem. Theory Comput. 11, 24732486 (2015).
http://dx.doi.org/10.1021/ct5010593
60.
H. L. Williams, K. Szalewicz, R. Moszynski, and B. Jeziorski, J. Chem. Phys. 103, 45864599 (1995).
http://dx.doi.org/10.1063/1.470646
61.
J. R. Schmidt, K. Yu, and J. G. McDaniel, Acc. Chem. Res. 48, 548556 (2015).
http://dx.doi.org/10.1021/ar500272n
62.
J. G. McDaniel and J. R. Schmidt, J. Phys. Chem. A 117, 20532066 (2013).
http://dx.doi.org/10.1021/jp3108182
63.
T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.015701
64.
M. Tafipolsky and K. Ansog, J. Chem. Theory Comput. 12, 12671279 (2016).
http://dx.doi.org/10.1021/acs.jctc.5b01057
65.
J. G. McDaniel and J. R. Schmidt, Annu. Rev. Phys. Chem. 67, 467488 (2016).
http://dx.doi.org/10.1146/annurev-physchem-040215-112047
66.
R. M. Parrish and C. D. Sherrill, J. Chem. Phys. 141, 044115 (2014).
http://dx.doi.org/10.1063/1.4889855
67.
R. M. Parrish, T. M. Parker, and C. D. Sherrill, J. Chem. Theory Comput. 10, 44174431 (2014).
http://dx.doi.org/10.1021/ct500724p
68.
D. V. Sakharov and C. Lim, J. Comput. Chem. 30, 191202 (2008).
http://dx.doi.org/10.1002/jcc.21048
69.
R. Chaudret, N. Gresh, O. Parisel, and J.-P. Piquemal, J. Comput. Chem. 32, 29492957 (2011).
http://dx.doi.org/10.1002/jcc.21865
70.
T. Dudev, M. Devereux, M. Meuwly, C. Lim, J. P. Piquemal, and N. Gresh, J. Comput. Chem. 36, 285302 (2015).
http://dx.doi.org/10.1002/jcc.23801
71.
Y. Yao, Y. Kanai, and M. L. Berkowitz, J. Phys. Chem. Lett. 5, 27112716 (2014).
http://dx.doi.org/10.1021/jz501238v
72.
W. Chen and M. S. Gordon, J. Phys. Chem. 100, 1431614328 (1996).
http://dx.doi.org/10.1021/jp960694r
73.
T. J. Giese and D. M. York, J. Chem. Phys. 120, 99039906 (2004).
http://dx.doi.org/10.1063/1.1756583
74.
O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109 (2010).
http://dx.doi.org/10.1063/1.3432765
75.
A. Ambrosetti, N. Ferri, R. A. Distasio, Jr., and A. Tkatchenko, Science 351, 11711176 (2016).
http://dx.doi.org/10.1126/science.aae0509
76.
C. L. Freeman, J. H. Harding, D. J. Cooke, J. A. Elliott, J. S. Lardge, and D. M. Duffy, J. Phys. Chem. C 111, 1194311951 (2007).
http://dx.doi.org/10.1021/jp071887p
77.
Q. Cui, R. Hernandez, S. Mason, T. Frauenheim, J. Pedersen, and F. M. Geiger, J. Phys. Chem. B 120, 72977306 (2016).
http://dx.doi.org/10.1021/acs.jpcb.6b03976
78.
D. M. Zuckerman, Annu. Rev. Biophys. 40, 4162 (2011).
http://dx.doi.org/10.1146/annurev-biophys-042910-155255
79.
W. T. Yang, Phys. Rev. Lett. 66, 14381441 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1438
80.
K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayashi, Chem. Phys. Lett. 313, 701706 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00874-X
81.
D. G. Fedorov and K. Kitaura, J. Phys. Chem. A 111, 69046914 (2007).
http://dx.doi.org/10.1021/jp0716740
82.
R. M. Richard, K. U. Lao, and J. M. Herbert, Acc. Chem. Res. 47, 28282836 (2014).
http://dx.doi.org/10.1021/ar500119q
83.
K. M. Merz, Jr., Acc. Chem. Res. 47, 28042811 (2014).
http://dx.doi.org/10.1021/ar5001023
84.
H. J. Kulik, N. Luehr, I. S. Ufimtsev, and T. J. Martinez, J. Phys. Chem. B 116, 1250112509 (2012).
http://dx.doi.org/10.1021/jp307741u
85.
H. Kruse and S. Grimme, J. Chem. Phys. 136, 154101 (2012).
http://dx.doi.org/10.1063/1.3700154
86.
A. J. Cohen, P. Mori-Sanchez, and W. T. Yang, Chem. Rev. 112, 289320 (2012).
http://dx.doi.org/10.1021/cr200107z
87.
M. J. Gillan, D. Alfe, and A. Michaelides, J. Chem. Phys. 144, 130901 (2016).
http://dx.doi.org/10.1063/1.4944633
88.
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
89.
P. Goyal, H. J. Qian, S. Irle, X. Lu, D. Roston, T. Mori, M. Elstner, and Q. Cui, J. Phys. Chem. B 118, 1100711027 (2014).
http://dx.doi.org/10.1021/jp503372v
90.
J. L. Gao, D. G. Truhlar, Y. J. Wang, M. J. M. Mazack, P. Loffler, M. R. Provorse, and P. Rehak, Acc. Chem. Res. 47, 28372845 (2014).
http://dx.doi.org/10.1021/ar5002186
91.
W. Xie, M. Orozco, D. G. Truhlar, and J. L. Gao, J. Chem. Theory Comput. 5, 459467 (2009).
http://dx.doi.org/10.1021/ct800239q
92.
K. U. Lao and J. M. Herbert, J. Chem. Phys. 139, 034107 (2013).
http://dx.doi.org/10.1063/1.4813523
93.
T. J. Giese, H. Chen, T. Dissanayake, G. M. Giambasu, H. Heldenbrand, M. Huang, E. R. Kuechler, T. S. Lee, M. T. Panteva, B. K. Radak, and D. M. York, J. Chem. Theory Comput. 9, 14171427 (2013).
http://dx.doi.org/10.1021/ct3010134
94.
M. Gaus, Q. Cui, and M. Elstner, J. Chem. Theory Comput. 7, 931948 (2011).
http://dx.doi.org/10.1021/ct100684s
95.
M. S. Gordon, Q. A. Smith, P. Xu, and L. V. Slipchenko, Annu. Rev. Phys. Chem. 64, 553578 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110031
96.
M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and T. E. Markland, Chem. Rev. 116, 75297550 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00674
97.
A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solution (Wiley, New York, 1991).
98.
A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, J. Phys. Chem. A 105, 93969409 (2001).
http://dx.doi.org/10.1021/jp004368u
99.
G. A. Voth, Acc. Chem. Res. 39, 143150 (2006).
http://dx.doi.org/10.1021/ar0402098
100.
C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 1075710816 (2009).
http://dx.doi.org/10.1039/b907148b
101.
W. Jiang, N. J. DeYonker, J. J. Determan, and A. K. Wilson, J. Phys. Chem. A 116, 870885 (2012).
http://dx.doi.org/10.1021/jp205710e
102.
M. N. Weaver, K. M. Merz, Jr., D. X. Ma, H. J. Kim, and L. Gagliardi, J. Chem. Theory Comput. 9, 52775285 (2013).
http://dx.doi.org/10.1021/ct400856g
103.
M. Gaus, H. Jin, D. Demapan, A. S. Christensen, P. Goyal, M. Elstner, and Q. Cui, J. Chem. Theory Comput. 11, 42054219 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00600
104.
C. Hättig, W. Klopper, A. Köhn, and D. P. Tew, Chem. Rev. 112, 474 (2012).
http://dx.doi.org/10.1021/cr200168z
105.
B. M. Austin, D. Y. Zubarev, and W. A. Lester, Chem. Rev. 112, 263288 (2012).
http://dx.doi.org/10.1021/cr2001564
106.
D. C. Rees, Annu. Rev. Biochem. 71, 221246 (2002).
http://dx.doi.org/10.1146/annurev.biochem.71.110601.135406
107.
G. K. L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465481 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103338
108.
T. Yanai, Y. Kurashige, E. Neuscamman, and G. K. L. Chan, J. Chem. Phys. 132, 024105 (2010).
http://dx.doi.org/10.1063/1.3275806
109.
S. Sharma, K. Sivalingam, F. Neese, and G. K. L. Chan, Nat. Chem. 6, 927933 (2014).
http://dx.doi.org/10.1038/nchem.2041
110.
Y. Kurashige, G. K. L. Chan, and T. Yanai, Nat. Chem. 5, 660666 (2013).
http://dx.doi.org/10.1038/nchem.1677
111.
M. Wanko, M. Hoffmann, P. Strodel, A. Koslowski, W. Thiel, F. Neese, T. Frauenheim, and M. Elstner, J. Phys. Chem. B 109, 36063615 (2005).
http://dx.doi.org/10.1021/jp0463060
112.
M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. 130, 054112 (2009).
http://dx.doi.org/10.1063/1.3073302
113.
O. Valsson, P. Campomanes, I. Tavernelli, U. Rothlisberger, and C. Filippi, J. Chem. Theory Comput. 9, 24412454 (2013).
http://dx.doi.org/10.1021/ct3010408
114.
B. G. Levine, C. Ko, J. Quenneville, and T. J. Martinez, Mol. Phys. 104, 10391051 (2006).
http://dx.doi.org/10.1080/00268970500417762
115.
Y. Yang, H. van Aggelen, and W. T. Yang, J. Chem. Phys. 139, 224105 (2013).
http://dx.doi.org/10.1063/1.4834875
116.
Z. X. Qu and J. L. Gao, Chem. J. Chin. Univ. 36, 22362240 (2015).
http://dx.doi.org/10.7503/cjcu20150629
117.
G. Bhabha, J. T. Biel, and J. S. Fraser, Acc. Chem. Res. 48, 423430 (2015).
http://dx.doi.org/10.1021/ar5003158
118.
D. Riccardi, P. Schaefer, Y. Yang, H. Yu, N. Ghosh, X. Prat-Resina, P. Konig, G. Li, D. Xu, H. Guo, M. Elstner, and Q. Cui, J. Phys. Chem. B 110, 64586469 (2006).
http://dx.doi.org/10.1021/jp056361o
119.
H. Hu, Z. Y. Lu, and W. T. Yang, J. Chem. Theory Comput. 3, 390406 (2007).
http://dx.doi.org/10.1021/ct600240y
120.
T. H. Rod and U. Ryde, J. Chem. Theory Comput. 1, 12401251 (2005).
http://dx.doi.org/10.1021/ct0501102
121.
T. Kosugi and S. Hayashi, J. Chem. Theory Comput. 8, 322334 (2012).
http://dx.doi.org/10.1021/ct2005837
122.
P. Goyal, S. Yang, and Q. Cui, Chem. Sci. 6, 826841 (2015).
http://dx.doi.org/10.1039/C4SC01674B
123.
W. Thiel, Adv. Chem. Phys. 93, 703757 (1996).
http://dx.doi.org/10.1002/9780470141526.ch10
124.
M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 72607268 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
125.
A. S. Christensen, T. Kubar, Q. Cui, and M. Elstner, Chem. Rev. 116, 53015337 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00584
126.
A. S. Christensen, M. Elstner, and Q. Cui, J. Chem. Phys. 143, 084123 (2015).
http://dx.doi.org/10.1063/1.4929335
127.
P. O. Dral, X. Wu, L. Sporkel, A. Koslowski, and W. Thiel, J. Chem. Theory Comput. 12, 10971120 (2016).
http://dx.doi.org/10.1021/acs.jctc.5b01047
128.
M. Gaus, A. Goez, and M. Elstner, J. Chem. Theory Comput. 9, 338354 (2012).
http://dx.doi.org/10.1021/ct300849w
129.
M. Gaus, X. Lu, M. Elstner, and Q. Cui, J. Chem. Theory Comput. 10, 15181537 (2014).
http://dx.doi.org/10.1021/ct401002w
130.
X. Lu, M. Gaus, M. Elstner, and Q. Cui, J. Phys. Chem. B 119, 10621082 (2015).
http://dx.doi.org/10.1021/jp506557r
131.
K. Nam, Q. Cui, J. Gao, and D. M. York, J. Chem. Theory Comput. 3, 486504 (2007).
http://dx.doi.org/10.1021/ct6002466
132.
W. Thiel and A. A. Voityuk, J. Phys. Chem. 100, 616626 (1996).
http://dx.doi.org/10.1021/jp952148o
133.
Y. Yang, H. Yu, D. York, M. Elstner, and Q. Cui, J. Chem. Theory Comput. 4, 20672084 (2008).
http://dx.doi.org/10.1021/ct800330d
134.
V. Mlynsky, P. Banas, J. Sponer, M. W. van der Kamp, A. J. Mulholland, and M. Otyepka, J. Chem. Theory Comput. 10, 16081622 (2014).
http://dx.doi.org/10.1021/ct401015e
135.
F. Weinhold and C. R. Landis, Valency and Bonding (Cambridge University Press, 2005).
136.
Y. R. Mo and J. L. Gao, J. Comput. Chem. 21, 14581469 (2000).
http://dx.doi.org/10.1002/1096-987X(200012)21:16<1458::AID-JCC4>3.0.CO;2-2
137.
R. Sure and S. Grimme, J. Comput. Chem. 34, 16721685 (2013).
http://dx.doi.org/10.1002/jcc.23317
138.
S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen, J. Chem. Phys. 143, 054107 (2015).
http://dx.doi.org/10.1063/1.4927476
139.
H. Kruse, A. Mladek, K. Gkionis, A. Hansen, S. Grimme, and J. Sponer, J. Chem. Theory Comput. 11, 49724991 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00515
140.
T. J. Watson, Jr. and G. K. L. Chan, J. Chem. Theory Comput. 12, 512522 (2016).
http://dx.doi.org/10.1021/acs.jctc.5b00138
141.
H. Sun, K. F. Freed, M. E. Herman, and D. L. Yeager, J. Chem. Phys. 72, 41584173 (1980).
http://dx.doi.org/10.1063/1.439646
142.
S. C. L. Kamerlin and A. Warshel, Faraday Discuss. 145, 71106 (2010).
http://dx.doi.org/10.1039/B907354J
143.
J. Danielsson and M. Meuwly, J. Chem. Theory Comput. 4, 10831093 (2008).
http://dx.doi.org/10.1021/ct800066q
144.
R. B. Liang, J. M. J. Swanson, Y. X. Peng, M. Wikström, and G. A. Voth, Proc. Natl. Acad. Sci. U. S. A. 113, 74207425 (2016).
http://dx.doi.org/10.1073/pnas.1601982113
145.
J. Åqvist and S. C. L. Kamerlin, ACS Catal. 6, 17371743 (2016).
http://dx.doi.org/10.1021/acscatal.5b02491
146.
D. Riccardi, P. König, X. Prat-Resina, H. Yu, M. Elstner, T. Frauenheim, and Q. Cui, J. Am. Chem. Soc. 128, 1630216311 (2006).
http://dx.doi.org/10.1021/ja065451j
147.
T. Kubar, P. B. Woiczikowski, G. Cuniberti, and M. Elstner, J. Phys. Chem. B 112, 79377947 (2008).
http://dx.doi.org/10.1021/jp801486d
148.
T. Kubar and M. Elstner, J. Phys. Chem. B 112, 87888798 (2008).
http://dx.doi.org/10.1021/jp803661f
149.
G. Ludemann, I. A. Solov’yov, T. Kubar, and M. Elstner, J. Am. Chem. Soc. 137, 11471156 (2015).
http://dx.doi.org/10.1021/ja510550g
150.
T. Vreven and K. Morokuma, J. Comput. Chem. 21, 14191432 (2000).
http://dx.doi.org/10.1002/1096-987X(200012)21:16<1419::AID-JCC1>3.0.CO;2-C
151.
J. Gao, in Reviews in Computational Chemistry VII, edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York, 1995), p. 119.
152.
Q. Cui, H. Guo, and M. Karplus, J. Chem. Phys. 117, 56175631 (2002).
http://dx.doi.org/10.1063/1.1501134
153.
P. Huang and E. A. Carter, Annu. Rev. Phys. Chem. 59, 261290 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093528
154.
F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 25642568 (2012).
http://dx.doi.org/10.1021/ct300544e
155.
R. Lonsdale and A. J. Mulholland, Curr. Top. Med. Chem. 14, 13391347 (2014).
http://dx.doi.org/10.2174/1568026614666140506114859
156.
G. Knizia and G. K. L. Chan, J. Chem. Theory Comput. 9, 14281432 (2013).
http://dx.doi.org/10.1021/ct301044e
157.
J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 140, 18A507 (2014).
http://dx.doi.org/10.1063/1.4864040
158.
S. Marti, V. Moliner, and I. Tuñón, J. Chem. Theory Comput. 1, 10081016 (2005).
http://dx.doi.org/10.1021/ct0501396
159.
F. Claeyssens, J. N. Harvey, F. R. Manby, R. A. Mata, A. J. Mulholland, K. E. Ranaghan, M. Schutz, S. Thiel, W. Thiel, and H. J. Werner, Angew. Chem., Int. Ed. 45, 68566859 (2006).
http://dx.doi.org/10.1002/anie.200602711
160.
X. Lu, D. Fang, S. Ito, Y. Okamoto, V. Ovchinnikov, and Q. Cui, Mol. Simul. 42, 10561078 (2016).
http://dx.doi.org/10.1080/08927022.2015.1132317
161.
G. König, P. S. Hudson, S. Boresch, and H. L. Woodcock, J. Chem. Theory Comput. 10, 14061419 (2014).
http://dx.doi.org/10.1021/ct401118k
162.
A. Pohorille, C. Jarzynski, and C. Chipot, J. Phys. Chem. B 114, 1023510253 (2010).
http://dx.doi.org/10.1021/jp102971x
163.
M. Retegan, M. Martins-Costa, and M. F. Ruiz-Lopez, J. Chem. Phys. 133, 064103 (2010).
http://dx.doi.org/10.1063/1.3466767
164.
I. Polyak, T. Benighaus, E. Boulanger, and W. Thiel, J. Chem. Phys. 139, 064105 (2013).
http://dx.doi.org/10.1063/1.4817402
165.
Y. Zhou and J. Z. Pu, J. Chem. Theory Comput. 10, 30383054 (2014).
http://dx.doi.org/10.1021/ct4009624
166.
N. V. Plotnikov, S. C. L. Kamerlin, and A. Warshel, J. Phys. Chem. B 115, 79507962 (2011).
http://dx.doi.org/10.1021/jp201217b
167.
P. O. Dral, O. A. von Lilienfeld, and W. Thiel, J. Chem. Theory Comput. 11, 21202125 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00141
168.
S. C. L. Kamerlin, M. Haranczyk, and A. Warshel, J. Phys. Chem. B 113, 12531272 (2009).
http://dx.doi.org/10.1021/jp8071712
169.
G. Hummer, J. Chem. Phys. 114, 73307337 (2001).
http://dx.doi.org/10.1063/1.1363668
170.
M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, J. Chem. Phys. 128, 214104 (2008).
http://dx.doi.org/10.1063/1.2931945
171.
N. Luehr, T. E. Markland, and T. J. Martinez, J. Chem. Phys. 140, 084116 (2014).
http://dx.doi.org/10.1063/1.4866176
172.
R. P. Steele, J. Chem. Phys. 139, 011102 (2013).
http://dx.doi.org/10.1063/1.4812568
173.
K. Nam, J. Chem. Theory Comput. 10, 41754183 (2014).
http://dx.doi.org/10.1021/ct5005643
174.
O. Marsalek and T. E. Markland, J. Chem. Phys. 144, 054112 (2016).
http://dx.doi.org/10.1063/1.4941093
175.
U. Ryde and K. Nilsson, J. Am. Chem. Soc. 125, 1423214233 (2003).
http://dx.doi.org/10.1021/ja0365328
176.
U. Ryde, C. Greco, and L. De Gioia, J. Am. Chem. Soc. 132, 45124513 (2010).
http://dx.doi.org/10.1021/ja909194f
177.
Y. W. Hsiao, E. Sanchez-Garcia, M. Doerr, and W. Thiel, J. Phys. Chem. B 114, 1541315423 (2010).
http://dx.doi.org/10.1021/jp108095n
178.
J. Tenboer et al., Science 346, 12421246 (2014).
http://dx.doi.org/10.1126/science.1259357
179.
T. R. M. Barends et al., Science 350, 445450 (2015).
http://dx.doi.org/10.1126/science.aac5492
180.
X. He, B. Wang, and K. M. Merz, Jr., J. Phys. Chem. B 113, 1038010388 (2009).
http://dx.doi.org/10.1021/jp901992p
181.
J. A. Vila, J. M. Aramini, P. Rossi, A. Kuzin, M. Su, J. Seetharaman, R. Xiao, L. Tong, G. T. Montelione, and H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A. 105, 1438914394 (2008).
http://dx.doi.org/10.1073/pnas.0807105105
182.
M. J. Schnieders, T. D. Fenn, V. S. Pande, and A. T. Brunger, Acta Crystallogr., Sect. D 65, 952965 (2009).
http://dx.doi.org/10.1107/S0907444909022707
183.
K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. L. Hu, M. W. Ribbe, F. Neese, U. Bergmann, and S. DeBeer, Science 334, 974977 (2011).
http://dx.doi.org/10.1126/science.1206445
184.
R. Bjornsson, F. Neese, R. R. Schrock, O. Einsle, and S. DeBeer, J. Biol. Inorg. Chem. 20, 447460 (2015).
http://dx.doi.org/10.1007/s00775-014-1230-6
185.
N. Cox, D. A. Pantazis, F. Neese, and W. Lubitz, Acc. Chem. Res. 46, 15881596 (2013).
http://dx.doi.org/10.1021/ar3003249
186.
F. Neese, Coord. Chem. Rev. 253, 526563 (2009).
http://dx.doi.org/10.1016/j.ccr.2008.05.014
187.
L. Wang, C. T. Middleton, M. T. Zanni, and J. L. Skinner, J. Phys. Chem. B 115, 37133724 (2011).
http://dx.doi.org/10.1021/jp200745r
188.
T. L. Jansen and J. Knoester, J. Chem. Phys. 124, 044502 (2006).
http://dx.doi.org/10.1063/1.2148409
189.
W. Zhuang, D. Abramavicius, T. Hayashi, and S. Mukamel, J. Phys. Chem. B 110, 33623374 (2006).
http://dx.doi.org/10.1021/jp055813u
190.
S. Mukamel, Annu. Rev. Phys. Chem. 51, 691729 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
191.
H. J. Bakker and J. L. Skinner, Chem. Rev. 110, 14981517 (2010).
http://dx.doi.org/10.1021/cr9001879
192.
G. R. Medders and F. Paesani, J. Chem. Theory Comput. 11, 11451154 (2015).
http://dx.doi.org/10.1021/ct501131j
193.
C. Kotting and K. Gerwert, Biol. Chem. 396, 131144 (2015).
http://dx.doi.org/10.1515/hsz-2014-0219
194.
P. Phatak, N. Ghosh, H. Yu, Q. Cui, and M. Elstner, Proc. Natl. Acad. Sci. U. S. A. 105, 1967219677 (2008).
http://dx.doi.org/10.1073/pnas.0810712105
195.
P. Goyal, N. Ghosh, P. Phatak, M. Clemens, M. Gaus, M. Elstner, and Q. Cui, J. Am. Chem. Soc. 133, 1498114997 (2011).
http://dx.doi.org/10.1021/ja201568s
196.
S. Wolf, E. Freier, Q. Cui, and K. Gerwert, J. Chem. Phys. 141, 22D524 (2014).
http://dx.doi.org/10.1063/1.4902237
197.
F. Garczarek and K. Gerwert, Nature 439, 109112 (2006).
http://dx.doi.org/10.1038/nature04231
198.
O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown, and H. Kandori, Chem. Rev. 114, 126163 (2014).
http://dx.doi.org/10.1021/cr4003769
199.
E. Freier, S. Wolf, and K. Gerwert, Proc. Natl. Acad. Sci. U. S. A. 108, 1143511439 (2011).
http://dx.doi.org/10.1073/pnas.1104735108
200.
Q. Cui and M. Elstner, Phys. Chem. Chem. Phys. 16, 1436814377 (2014).
http://dx.doi.org/10.1039/c4cp00908h
201.
O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 074106 (2006).
http://dx.doi.org/10.1063/1.2244560
202.
H. J. Kulik, J. Chem. Phys. 142, 240901 (2016).
http://dx.doi.org/10.1063/1.4922693
203.
V. Lutsker, B. Aradi, and T. A. Niehaus, J. Chem. Phys. 143, 184107 (2015).
http://dx.doi.org/10.1063/1.4935095
204.
H. J. Kulik, N. Seelam, B. D. Mar, and T. J. Martinez, J. Phys. Chem. A 120, 59395949 (2016).
http://dx.doi.org/10.1021/acs.jpca.6b04527
205.
S. Wolf, E. Freier, and K. Gerwert, Biophys. J. 107, 174184 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.05.019
206.
A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W. H. Freeman and Company, 1999).
207.
D. Roston, D. Demapan, and Q. Cui, J. Am. Chem. Soc. 138, 73867394 (2016).
http://dx.doi.org/10.1021/jacs.6b03156
208.
D. Roston and Q. Cui, J. Am. Chem. Soc. 138, 1194611957 (2016).
http://dx.doi.org/10.1021/jacs.6b07347
209.
D. T. Major and J. L. Gao, J. Chem. Theory Comput. 3, 949960 (2007).
http://dx.doi.org/10.1021/ct600371k
210.
L. Wang, M. Ceriotti, and T. E. Markland, J. Chem. Phys. 141, 104502 (2014).
http://dx.doi.org/10.1063/1.4894287
211.
J. L. Gao and D. G. Truhlar, Annu. Rev. Phys. Chem. 53, 467505 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.091301.150114
212.
S. Hammes-Schiffer, Acc. Chem. Res. 34, 273281 (2001).
http://dx.doi.org/10.1021/ar9901117
213.
R. Blomberg, H. Kries, D. M. Pinkas, P. R. E. Mittl, M. G. Grutter, H. K. Privett, S. L. Mayo, and D. Hilvert, Nature 503, 418 (2013).
http://dx.doi.org/10.1038/nature12623
214.
J. V. Rodrigues, S. Bershtein, A. Li, E. R. Lozovsky, D. L. Hartl, and E. I. Shakhnovich, Proc. Natl. Acad. Sci. U. S. A. 113, E1470E1478 (2016).
http://dx.doi.org/10.1073/pnas.1601441113
215.
M. P. Jacobson, C. Kalyanaraman, S. W. Zhao, and B. X. Tian, Trends Biochem. Sci. 39, 363371 (2014).
http://dx.doi.org/10.1016/j.tibs.2014.05.006
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/14/10.1063/1.4964410
Loading
/content/aip/journal/jcp/145/14/10.1063/1.4964410
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/14/10.1063/1.4964410
2016-10-10
2016-12-07

Abstract

In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/14/1.4964410.html;jsessionid=7WBk8zdeItQhsYHP5tigYK7F.x-aip-live-03?itemId=/content/aip/journal/jcp/145/14/10.1063/1.4964410&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/14/10.1063/1.4964410&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/14/10.1063/1.4964410'
Right1,Right2,Right3,