Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
C. P. Royall and S. R. Williams, “The role of local structure in dynamical arrest,” Phys. Rep. 560, 175 (2015).
S. Karmakar, C. Dasgupta, and S. Sastry, “Growing length scales and their relation to timescales in glass-forming liquids,” Annu. Rev. Condens. Matter Phys. 5, 255284 (2014).
J. Colmenero, “Are polymers standard glass-forming systems? the role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers,” J. Phys.: Condens. Matter 27, 103101 (2015).
Z. Raza, B. Alling, and I. A. Abrikosov, “Computer simulations of glasses: The potential energy landscape,” J. Phys.: Condens. Matter 27, 293201 (2015).
G. Parisi and B. Seoane, “Liquid-glass transition in equilibrium,” Phys. Rev. E 89, 022309 (2014).
S. Ashtekar, G. Scott, J. Lyding, and G. M, “Direct imaging of two-state dynamics on the amorphous silicon surface,” Phys. Rev. Lett. 106, 235501 (2011).
P. Y. Huang, S. Kurasch, J. S. Alden, A. Shekhawat, A. A. Alemi, P. L. McEuen, J. P. Sethna, U. Kaiser, and D. A. Muller, “Imaging atomic rearrangements in two-dimensional silica glass: Watching silicas dance,” Science 342, 224227 (2013).
D.-X. Li, B.-L. Liu, Y.-s. Liu, and C.-l. Chen, “Predict the glass transition temperature of glycerolwater binary cryoprotectant by molecular dynamic simulation,” Cryobiology 56, 114119 (2008).
C. Li and A. Strachan, “Molecular scale simulations on thermoset polymers: A review,” J. Polym. Sci., Part B: Polym. Phys. 53, 103122 (2015).
J. J. Ou and S. H. Chen, “Molecular dynamics simulation of organic glass formers: I. ortho-terphenyl and 1, 3, 5-tri-naphthyl benzene,” J. Comput. Chem. 19, 8693 (1998).<86::AID-JCC7>3.0.CO;2-V
S. Christensen, A. Browning, and J. Gosse, “Computational methods for new materials development,” in 53rd AIAA/ASME/ASCE/AHS/ASC Conferences (AIAA, 2012),
A. V. Babkin, E. B. Zodbinov, B. A. Bulgakov, A. V. Kepman, and V. V. Avdeev, “Low-melting siloxane-bridged phthalonitriles for heat-resistant matrices,” Eur. Polym. J. 66, 452457 (2015).
C. S. Marvel and J. H. Rassweiler, J. Am. Chem. Soc. 80, 1197 (1958).
X. Peng, H. Sheng, H. Guo, K. Naito, X. Yu, H. Ding, X. Qu, and Q. Zhang, High Perform. Polym. 26, 837 (2014).
B. A. Bulgakov, A. V. Babkin, P. B. Dzhevakov, A. A. Bogolyubov, A. V. Sulimov, A. V. Kepman, D. V. Guseva, V. Y. Rudyak, and A. V. Chertovich, “Low-melting phthalonitrile thermosetting monomers with siloxane- and phosphate bridges,” Eur. Polym. J. 84, 205217 (2016).
S. W. Watt, J. A. Chisholm, W. Jones, and S. Motherwell, “A molecular dynamics simulation of the melting points and glass transition temperatures of myo- and neo-inositol,” J. Chem. Phys. 121, 9565 (2004).
J. Ghosh and R. Faller, “A comparative molecular simulation study of the glass former ortho-terphenyl in bulk and freestanding films,” J. Chem. Phys. 125, 044506 (2006).
C. Jiang, J. Zhang, S. Lin, S. Ju, and D. Jiang, “Effects of free organic groups in carbon nanotubes on glass transition temperature of epoxy matrix composites,” Compos. Sci. Technol. 118, 269275 (2015).
A. Odinokov, A. Freidzon, and A. Bagaturyants, “Molecular dynamics simulation of the glass transition in 4,4-n,n-dicarbazolylbiphenyl,” Chem. Phys. Lett. 633, 4146 (2015).
D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, “Gromacs: Fast, flexible, and free,” J. Comput. Chem. 26, 17011718 (2005).
D. Van der Spoel, E. Lindahl, B. Hess, A. Van Buuren, E. Apol, P. J. Muelenhoff, D. Tielemann, A. L. T. M. Sijbers, K. A. Feenstra, R. Van Drunen, and H. J. C. Berendsen, Gromacs user manual version 4.0. The GROMACS development team -, Groningen, 2005.
See for information about BIOVIA Materials Studio.
P. V. Komarov, Y. T. Chiu, S. M. Chen, P. G. Khalatur, and P. Reineker, “Highly cross-linked epoxy resins: An atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure,” Macromolecules 40, 81048113 (2007).
A. A. Gavrilov, P. V. Komarov, and P. G. Khalatur, “Thermal properties and topology of epoxy networks: A multiscale simulation methodology,” Macromolecules 48, 206212 (2015).
H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, “An ab initio CFF93 all-atom force field for polycarbonates,” J. Am. Chem. Soc. 116, 2978 (1994).
D. V. Guseva, P. V. Komarov, and A. V. Lyulin, “Computational synthesis, structure, and glass transition of (1, 4) cis-polyisoprene-based nanocomposite by multiscale modeling,” J. Polym. Sci., Part B: Polym. Phys. 54, 473485 (2016).
D. V. Guseva, P. V. Komarov, and A. V. Lyulin, “Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates,” J. Chem. Phys. 140, 114903 (2014).
G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 8085 (1970).
C. A. Angell, “Perspective on the glass transition,” J. Phys. Chem. Sol. 49, 863 (1988).
C. A. Angell, “Formation of glasses from liquids and biopolymers,” Science 267, 19241935 (1995).
A. R. Khokhlov, A. Y. Grosberg, and V. S. Pande, Statistical Physics of Macromolecules, Polymers and Complex Materials (American Institute of Physics, 1994).
See for information about the Lomonosov Moscow State University Research Computational Center.

Data & Media loading...


Article metrics loading...



Phthalonitrile compounds with Si bridges were recently suggested for producing thermosetting polymer composites with reduced and thus expanded processing range. The detailed experimental investigation of this class of phthalonitriles is still difficult due to development time and costs limitations and the need to take into account the structural changes during the crosslinking. In this paper, we try to overcome these limitations using computer simulations. We performed full-atomistic molecular dynamics simulations of various phthalonitrile compounds to understand the influence of molecular structure on the bulk glass temperature . Two molecular properties affect of the resulting bulk compound: the size of the residue and the length of the Si bridge. The larger residues lead to higher s, while compounds with longer Si bridges have lower s. We have also studied relaxation mechanisms involved in the classification of the samples. Two different factors influence the relaxation mechanisms: energetic, which is provided by the rigidity of molecules, and entropic, connected with the available volume of the conformational space of the monomer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd