Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/14/10.1063/1.4964779
1.
P. V. Coveney and S. Wan, Phys. Chem. Chem. Phys. (published online).
http://dx.doi.org/10.1039/C6CP02349E
2.
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19, 774 (1951).
http://dx.doi.org/10.1063/1.1748352
3.
J. L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1675 (1961);
http://dx.doi.org/10.1103/PhysRev.122.1675
J. J. Salacuse, A. R. Denton, and P. A. Egelstaff, Phys. Rev. E 53, 2382 (1996);
http://dx.doi.org/10.1103/PhysRevE.53.2382
F. L. Román, J. A. White, and S. Velasco, J. Chem. Phys. 107, 4635 (1997);
http://dx.doi.org/10.1063/1.474824
F. L. Román, A. González, J. A. White, and S. Velasco, Am. J. Phys. 67, 1149 (1999);
http://dx.doi.org/10.1119/1.19100
D. Villamaina and E. Trizac, Eur. J. Phys. 35, 035011 (2014).
http://dx.doi.org/10.1088/0143-0807/35/3/035011
4.
T. E. de Oliveira, P. A. Netz, K. Kremer, C. Junghans, and D. Mukherji, J. Chem. Phys. 144, 174106 (2016).
http://dx.doi.org/10.1063/1.4947253
5.
R. H. Stokes, Aust. J. Chem. 20, 2087 (1967).
http://dx.doi.org/10.1071/CH9672087
6.
S. Weerasinghe and P. E. Smith, J. Phys. Chem. B 107, 3891 (2003).
http://dx.doi.org/10.1021/jp022049s
7.
O. Miyawaki, A. Saito, T. Matsuo, and K. Nakamura, Biosci. Biotechnol. Biochem. 61, 466469 (1997).
http://dx.doi.org/10.1271/bbb.61.466
8.
A. Ben-Naim, Molecular Theory of Solutions (Oxford University Press, 2006).
9.
V. Pierce, M. Kang, M. Aburi, S. Weerasinghe, and P. E. Smith, Cell Biochem. Biophys. 50, 1 (2008).
http://dx.doi.org/10.1007/s12013-007-9005-0
10.
S. Kjelstrup, S. K. Schnell, T. J. H. Vlugt, J.-M. Simon, A. Bardow, D. Bedeaux, and T. Trinh, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 023002 (2014);
http://dx.doi.org/10.1088/2043-6262/5/2/023002
X. Liu, S. K. Schnell, J. M. Simon, P. Krüeger, D. Bedeaux, S. Kjelstrup, A. Bardow, and T. J. H. Vlugt, Int. J. Thermophys. 34, 1169 (2013).
http://dx.doi.org/10.1007/s10765-013-1482-3
11.
A. Ben-Naim, J. Chem. Phys. 138, 224906 (2013).
http://dx.doi.org/10.1063/1.4810806
12.
D. Mukherji and K. Kremer, Macromolecules 46, 9158 (2013).
http://dx.doi.org/10.1021/ma401877c
13.
F. Román, J. White, A. González, and S. Velasco, “Ensemble effects in small systems,” in Theory and Simulation of Hard-Sphere Fluids and Related Systems (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 343381.
14.
M. Rovere, D. W. Heermann, and K. Binder, J. Phys.: Condens. Matter 2, 7009 (1990).
http://dx.doi.org/10.1088/0953-8984/2/33/013
15.
T. L. Hill, Thermodynamics of Small Systems (Dover, 1963);
J. L. Lebowitz and J. K. Percus, Phys. Rev. 124, 1673 (1961).
http://dx.doi.org/10.1103/PhysRev.124.1673
16.
S. K. Schnell, T. J. Vlugt, J.-M. Simon, D. Bedeaux, and S. Kjelstrup, Chem. Phys. Lett. 504, 199 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.01.080
17.
P. Krüger, S. K. Schnell, D. Bedeaux, S. Kjelstrup, T. J. H. Vlugt, and J.-M. Simon, J. Phys. Chem. Lett. 4, 235 (2013);
http://dx.doi.org/10.1021/jz301992u
P. Ganguly and N. F. A. van der Vegt, J. Chem. Theory Comput. 9, 1347 (2013).
http://dx.doi.org/10.1021/ct301017q
18.
K. Binder, Z. Phys. B 43, 119 (1981).
http://dx.doi.org/10.1007/BF01293604
19.
F. L. Román, J. A. White, and S. Velasco, EPL 42, 371 (1998);
http://dx.doi.org/10.1209/epl/i1998-00257-1
J. Salacuse, Physica A 387, 3073 (2008).
http://dx.doi.org/10.1016/j.physa.2008.01.094
20.
M. Rovere, D. W. Hermann, and K. Binder, EPL 6, 585 (1988);
http://dx.doi.org/10.1209/0295-5075/6/7/003
M. Rovere, P. Nielaba, and K. Binder, Z. Phys. B 90, 215 (1993).
http://dx.doi.org/10.1007/BF02198158
21.
S. Sengupta, P. Nielaba, M. Rao, and K. Binder, Phys. Rev. E 61, 1072 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.1072
22.
J. D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, and D. Reith, Comput. Phys. Commun. 184, 1129 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.12.004
23.
D. Mukherji, N. F. A. van der Vegt, and K. Kremer, J. Chem. Theory Comput. 8, 3536 (2012).
http://dx.doi.org/10.1021/ct300253n
24.
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, Bioinformatics 29, 845 (2013).
http://dx.doi.org/10.1093/bioinformatics/btt055
25.
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987);
http://dx.doi.org/10.1021/j100308a038
L. X. Dang and B. M. Pettitt, J. Phys. Chem. 91, 3349 (1987);
http://dx.doi.org/10.1021/j100296a048
Y. Wu, H. L. Tepper, and G. A. Voth, J. Chem. Phys. 124, 024503 (2006).
http://dx.doi.org/10.1063/1.2136877
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/14/10.1063/1.4964779
Loading
/content/aip/journal/jcp/145/14/10.1063/1.4964779
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/14/10.1063/1.4964779
2016-10-14
2016-12-10

Abstract

We present an accurate and efficient method to obtain Kirkwood-Buff (KB) integrals in the thermodynamic limit from small-sized molecular dynamics simulations. By introducing finite size effects into integral equations of statistical mechanics, we derive an analytical expression connecting the KB integrals of the bulk system with the fluctuations of the number of molecules in the corresponding closed system. We validate the method by calculating the activity coefficients of aqueous urea mixtures and the KB integrals of Lennard-Jones fluids. Moreover, our results demonstrate how to identify simulation conditions under which computer simulations reach the thermodynamic limit.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/14/1.4964779.html;jsessionid=EW9djBPu8b7vEvAEHc0tgrZm.x-aip-live-02?itemId=/content/aip/journal/jcp/145/14/10.1063/1.4964779&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/14/10.1063/1.4964779&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/14/10.1063/1.4964779'
Right1,Right2,Right3,