Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/2/10.1063/1.4958669
1.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
2.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).
3.
S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
4.
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
5.
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
6.
P. F. Loos and P. M. W. Gill, Int. J. Quantum Chem. 112, 1712 (2012).
http://dx.doi.org/10.1002/qua.23155
7.
C. Møller and M. Plesset, Phys. Rev. 46, 618 (1934).
http://dx.doi.org/10.1103/PhysRev.46.618
8.
G. S. Handler, Int. J. Quantum Chem. 33, 173 (1988).
http://dx.doi.org/10.1002/qua.560330302
9.
M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).
http://dx.doi.org/10.1103/PhysRev.106.364
10.
P. F. Loos and P. M. W. Gill, Phys. Rev. B 84, 033103 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.033103
11.
See supplementary material at http://dx.doi.org/10.1063/1.4958669 for additional figures and detailed comparisons to the VWN functional and the Quantum Monte Carlo data.[Supplementary Material]
12.
E. P. Wigner, Phys. Rev. 46, 1002 (1934).
http://dx.doi.org/10.1103/PhysRev.46.1002
13.
J. Sun, J. P. Perdew, and M. Seidl, Phys. Rev. B 81, 085123 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085123
14.
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
15.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
16.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/2/10.1063/1.4958669
Loading
/content/aip/journal/jcp/145/2/10.1063/1.4958669
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/2/10.1063/1.4958669
2016-07-08
2016-09-25

Abstract

A simple correlation energy functional for the uniform electron gas is derived based on the second-order Moller-Plesset perturbation theory. It can reproduce the known correlation functional in the high-density limit, while in the mid-density range maintaining a good agreement with the near-exact correlation energy of the uniform electron gas to within 2 × 10−3 hartree. The correlation energy is a function of a density parameter r and is of the form . The constants “a” and “b” are derived from the known correlation functional in the high-density limit. Comparisons to the Ceperley-Alder’s near-exact Quantum Monte Carlo results and the Vosko-Wilk-Nusair correlation functional are also reported.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/2/1.4958669.html;jsessionid=zHkHB_LQ9-tRP8LxVLaLWwVM.x-aip-live-03?itemId=/content/aip/journal/jcp/145/2/10.1063/1.4958669&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/2/10.1063/1.4958669&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/2/10.1063/1.4958669'
Right1,Right2,Right3,