Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/21/10.1063/1.4962216
1.
V. Agarwal and B. Peters, “Solute precipitate nucleation: A review of theory and simulation advances,” in Advances in Chemical Physics: Volume 155 (John Wiley & Sons, Inc., 2014), pp. 97160.
2.
J. Anwar and D. Zahn, Angew. Chem., Int. Ed. 50, 1996 (2011).
http://dx.doi.org/10.1002/anie.201000463
3.
F. Giberti, M. Salvalaglio, and M. Parrinello, IUCrJ 2, 256 (2015).
http://dx.doi.org/10.1107/S2052252514027626
4.
N. E. R. Zimmermann, B. Vorselaars, D. Quigley, and B. Peters, J. Am. Chem. Soc. 137, 13352 (2015).
http://dx.doi.org/10.1021/jacs.5b08098
5.
W. E. Müller, Molecular Biomineralization (Springer-Verlag, 2011).
6.
S.-H. Yu and S. Chen, “Biomineralization: Self-assembly processes,” in Encyclopedia of Inorganic and Bioinorganic Chemistry (John Wiley & Sons, Ltd., 2011).
7.
S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall, Nature 334, 692 (1988).
http://dx.doi.org/10.1038/334692a0
8.
J. Aizenberg, J. Cryst. Growth 211, 143 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00814-3
9.
K. Naka and Y. Chujo, Chem. Mater. 13, 3245 (2001).
http://dx.doi.org/10.1021/cm011035g
10.
J. D. Rodriguez-Blanco, S. Shaw, and L. G. Benning, Nanoscale 3, 265 (2011).
http://dx.doi.org/10.1039/C0NR00589D
11.
R. Demichelis, P. Raiteri, J. D. Gale, and R. Dovesi, CrystEngComm 14, 44 (2012).
http://dx.doi.org/10.1039/C1CE05976A
12.
D. Quigley and P. M. Rodger, J. Chem. Phys. 128, 221101 (2008).
http://dx.doi.org/10.1063/1.2940322
13.
D. Quigley, C. L. Freeman, J. H. Harding, and P. M. Rodger, J. Chem. Phys. 134, 044703 (2011).
http://dx.doi.org/10.1063/1.3530288
14.
A. F. Wallace, L. O. Hedges, A. Fernandez-Martinez, P. Raiteri, J. D. Gale, G. A. Waychunas, S. Whitelam, J. F. Banfield, and J. J. De Yoreo, Science 341, 885 (2013).
http://dx.doi.org/10.1126/science.1230915
15.
S. Whitelam, J. Chem. Phys. 132, 194901 (2010).
http://dx.doi.org/10.1063/1.3425661
16.
N. Duff and B. Peters, J. Chem. Phys. 131, 184101 (2009).
http://dx.doi.org/10.1063/1.3250934
17.
L. O. Hedges and S. Whitelam, J. Chem. Phys. 135, 164902 (2011).
http://dx.doi.org/10.1063/1.3655358
18.
D. P. Sanders, H. Larralde, and F. Leyvraz, Phys. Rev. B 75, 132101 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.132101
19.
A. Okamoto, T. Kuwatani, T. Omori, and K. Hukushima, Phys. Rev. E 92, 042130 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.042130
20.
A. J. Page and R. P. Sear, Phys. Rev. Lett. 97, 065701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.065701
21.
R. P. Sear, J. Phys.: Condens. Matter 24, 052205 (2012).
http://dx.doi.org/10.1088/0953-8984/24/5/052205
22.
S. Ryu and W. Cai, Phys. Rev. E 81, 030601 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.030601
23.
J. Kuipers and G. T. Barkema, Phys. Rev. E 82, 011128 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.011128
24.
B. C. Knott, V. Molinero, M. F. Doherty, and B. Peters, J. Am. Chem. Soc. 134, 19544 (2012).
http://dx.doi.org/10.1021/ja309117d
25.
E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013).
http://dx.doi.org/10.1021/ja4028814
26.
J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 142, 194709 (2015).
http://dx.doi.org/10.1063/1.4921185
27.
V. Agarwal and B. Peters, J. Chem. Phys. 140, 084111 (2014).
http://dx.doi.org/10.1063/1.4865338
28.
F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2050
29.
A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2635
30.
N. B. Wilding, Am. J. Phys. 69, 1147 (2001).
http://dx.doi.org/10.1119/1.1399044
31.
A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1195
32.
S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput. Chem. 13, 1011 (1992).
http://dx.doi.org/10.1002/jcc.540130812
33.
F. Zhu and G. Hummer, J. Comput. Chem. 33, 453 (2012).
http://dx.doi.org/10.1002/jcc.21989
34.
R. Radhakrishnan and T. Schlick, J. Chem. Phys. 121, 2436 (2004).
http://dx.doi.org/10.1063/1.1766014
35.
F. Schmitz, P. Virnau, and K. Binder, Phys. Rev. E 87, 053302 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.053302
36.
C. Dellago, P. G. Bolhuis, and P. L. Geissler, “Transition path sampling,” in Advances in Chemical Physics (John Wiley & Sons, Inc., 2003), pp. 178.
37.
F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.235
38.
A. Bazavov, B. A. Berg, and S. Dubey, Nucl. Phys. B 802, 421 (2008).
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.020
39.
C. Bonati and M. D’Elia, Phys. Rev. D 82, 114515 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.114515
40.
L. Mittag and M. J. Stephen, J. Phys. A: Math., Nucl. Gen. 7, L109 (1974).
http://dx.doi.org/10.1088/0305-4470/7/9/003
41.
D. Winter, P. Virnau, and K. Binder, J. Phys.: Condens. Matter 21, 464118 (2009).
http://dx.doi.org/10.1088/0953-8984/21/46/464118
42.
B. Widom, J. Chem. Phys. 39, 2808 (1963).
http://dx.doi.org/10.1063/1.1734110
43.
D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2002).
44.
L. Filion, M. Hermes, R. Ni, and M. Dijkstra, J. Chem. Phys. 133, 244115 (2010).
http://dx.doi.org/10.1063/1.3506838
45.
S. Jungblut and C. Dellago, J. Chem. Phys. 134, 104501 (2011).
http://dx.doi.org/10.1063/1.3556664
46.
H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems (Springer Science and Business Media, 2006).
47.
P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
http://dx.doi.org/10.1103/RevModPhys.62.251
48.
J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 144, 034501 (2016).
http://dx.doi.org/10.1063/1.4939641
49.
K. Kawasaki, Phys. Rev. 145, 224 (1966).
http://dx.doi.org/10.1103/PhysRev.145.224
50.
R. P. Sear, EPL 83, 66002 (2008).
http://dx.doi.org/10.1209/0295-5075/83/66002
51.
J. Kuipers and G. T. Barkema, Phys. Rev. E 79, 062101 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.062101
52.
S. Cabuk and M. D. Springer, Commun. Stat. Theory Methods 19, 1157 (1990).
http://dx.doi.org/10.1080/03610929008830253
53.
D. ÖKsoy and L. a Aroian, Commun. Stat. Simul. Comput. 23, 223 (1994).
http://dx.doi.org/10.1080/03610919408813166
54.
Z. Drezner and G. O. Wesolowsky, J. Stat. Comput. Simul. 35, 101 (1990).
http://dx.doi.org/10.1080/00949659008811236
55.
B. Cheng, G. A. Tribello, and M. Ceriotti, Phys. Rev. B 92, 180102 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.180102
56.
J. H. Harding, D. M. Duffy, M. L. Sushko, P. M. Rodger, D. Quigley, and J. A. Elliott, Chem. Rev. 108, 4823 (2008).
http://dx.doi.org/10.1021/cr078278y
57.
G. T. Beckham and B. Peters, J. Phys. Chem. Lett. 2, 1133 (2011).
http://dx.doi.org/10.1021/jz2002887
58.
B. Peters, J. Chem. Phys. 125, 241101 (2006).
http://dx.doi.org/10.1063/1.2409924
59.
S. Prestipino, A. Laio, and E. Tosatti, Phys. Rev. Lett. 108, 225701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.225701
60.
H. A. Kramers, Physica 7, 284 (1940).
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
61.
B. Leimkuhler and C. Matthews, AMRX 2013, 34 (2013).
http://dx.doi.org/10.1093/amrx/abs010
62.
P. G. Moschopoulos, Ann. Inst. Stat. Math. 37, 541 (1985).
http://dx.doi.org/10.1007/BF02481123
63.
J. Wedekind, R. Strey, and D. Reguera, J. Chem. Phys. 126, 134103 (2007).
http://dx.doi.org/10.1063/1.2713401
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/21/10.1063/1.4962216
Loading
/content/aip/journal/jcp/145/21/10.1063/1.4962216
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/21/10.1063/1.4962216
2016-09-13
2016-09-26

Abstract

We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a regime where partially disordered solute is a viable thermodynamic phase. Using a multicanonical sampling protocol, we compute phase diagrams for the system, from which we determine a parameter regime where the partially disordered phase is metastable almost everywhere in the temperature–fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour, which we examine via multidimensional free energy calculations. We consider the applicability of the model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO). We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular “seeding” method. We compare the resulting free energy barrier heights to those obtained via explicit free energy calculations over a wide range of temperatures and fugacities, carefully considering the propagation of statistical error. We find that the ability of the “seeding” method to reproduce accurate free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of a nucleation driving force Δ computed for bulk phases. We discuss possible reasons for this in terms of underlying kinetic assumptions, and those of classical nucleation theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/21/1.4962216.html;jsessionid=MlsHs8-H3yRxQnFt9s--0d1z.x-aip-live-06?itemId=/content/aip/journal/jcp/145/21/10.1063/1.4962216&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/21/10.1063/1.4962216&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/21/10.1063/1.4962216'
Right1,Right2,Right3,