Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/21/10.1063/1.4962283
1.
D. W. Dockery et al., “An association between air-pollution and mortality in 6 United-States cities,” N. Engl. J. Med. 329(24), 17531759 (1993).
http://dx.doi.org/10.1056/NEJM199312093292401
2.
C. I. Davidson, R. F. Phalen, and P. A. Solomon, “Airborne particulate matter and human health: A review,” Aerosol Sci. Technol. 39(8), 737749 (2005).
http://dx.doi.org/10.1080/02786820500191348
3.
J. L. Mauderly and J. C. Chow, “Health effects of organic aerosols,” Inhalation Toxicol. 20(3), 257288 (2008).
http://dx.doi.org/10.1080/08958370701866008
4.
M. Tainio, J. Kukkonen, and Z. Nahorski, “Impact of airborne particulate matter on human health: An assessment framework to estimate exposure and adverse health effects in Poland,” Arch. Environ. Prot. 36(1), 95115 (2010).
5.
K. H. Kim, E. Kabir, and S. Kabir, “A review on the human health impact of airborne particulate matter,” Environ. Int. 74, 136143 (2015).
http://dx.doi.org/10.1016/j.envint.2014.10.005
6.
D. E. Kinnison et al., “The chemical and radiative effects of the Mount-Pinatubo eruption,” J. Geophys. Res.: Atmos. 99(D12), 2570525731, doi:10.1029/94JD02318 (1994).
http://dx.doi.org/10.1029/94JD02318
7.
M. Kulmala et al., “Formation and growth rates of ultrafine atmospheric particles: A review of observations,” J. Aerosol Sci. 35(2), 143176 (2004).
http://dx.doi.org/10.1016/j.jaerosci.2003.10.003
8.
M. Kulmala et al., “Toward direct measurement of atmospheric nucleation,” Science 318(5847), 8992 (2007).
http://dx.doi.org/10.1126/science.1144124
9.
R. Y. Zhang et al., “Nucleation and growth of nanoparticles in the atmosphere,” Chem. Rev. 112(3), 19572011 (2012).
http://dx.doi.org/10.1021/cr2001756
10.
IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, New York, NY, USA; Cambridge, United Kingdom,2013), p. 1535.
11.
A. C. Dittenhoefer and R. G. Depena, “Study of production and growth of sulfate particles in plumes from a coal-fired power-plant,” Atmos. Environ. 12(1-3), 297306 (1978).
http://dx.doi.org/10.1016/0004-6981(78)90211-1
12.
H. K. Kammler, L. Madler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24(6), 583596 (2001).
http://dx.doi.org/10.1002/1521-4125(200106)24:6<583::aid-ceat583>3.0.co;2-h
13.
A. T. Zimmer and P. Biswas, “Characterization of the aerosols resulting from arc welding processes,” J. Aerosol Sci. 32(8), 9931008 (2001).
http://dx.doi.org/10.1016/S0021-8502(01)00035-0
14.
F. R. Hughes et al., “A comparison of modeling techniques for polydispersed droplet spectra in steam turbines,” J. Eng. Gas Turbines Power 138(4), 042603 (2016).
http://dx.doi.org/10.1115/1.4031389
15.
D. V. Spracklen et al., “Contribution of particle formation to global cloud condensation nuclei concentrations,” Geophys. Res. Lett. 35(6), L06808, doi:10.1029/2007GL033038 (2008).
http://dx.doi.org/10.1029/2007GL033038
16.
J. Merikanto et al., “Impact of nucleation on global CCN,” Atmos. Chem. Phys. 9(21), 86018616 (2009).
http://dx.doi.org/10.5194/acp-9-8601-2009
17.
D. Kashchiev, Nucleation (Butterworth-Heinemann, 2000).
18.
V. I. Kalikmanov, Nucleation Theory, Lecture Notes in Physics (Springer, Netherlands, 2013), Vol. 860.
19.
I. J. Ford, “Statistical mechanics of nucleation: A review,” Proc. Inst. Mech. Eng., Part C 218(8), 883899 (2004).
http://dx.doi.org/10.1243/0954406041474183
20.
C. Flageollet-Daniel, J. P. Garnier, and P. Mirabel, “Microscopic surface tension and binary nucleation,” J. Chem. Phys. 78(5), 26002606 (1983).
http://dx.doi.org/10.1063/1.445017
21.
J. P. Garnier and P. Mirabel, “Microscopic surface-tension and binary nucleation: The water acetone mixture,” Chem. Phys. Lett. 97(6), 566568 (1983).
http://dx.doi.org/10.1016/0009-2614(83)80474-6
22.
G. Wilemski, “Composition of the critical nucleus in multicomponent vapor nucleation,” J. Chem. Phys. 80(3), 13701372 (1984).
http://dx.doi.org/10.1063/1.446822
23.
G. Wilemski, “Revised classical binary nucleation theory for aqueous alcohol and acetone vapors,” J. Phys. Chem. 91(10), 24922498 (1987).
http://dx.doi.org/10.1021/j100294a011
24.
G. Wilemski, “Some issues of thermodynamic consistency in binary nucleation theory,” J. Chem. Phys. 88(8), 51345136 (1988).
http://dx.doi.org/10.1063/1.454666
25.
A. Laaksonen and M. Kulmala, “An explicit cluster model for binary nuclei in water-alcohol systems,” J. Chem. Phys. 95(9), 67456748 (1991).
http://dx.doi.org/10.1063/1.461513
26.
I. Napari and A. Laaksonen, “Gas-liquid nucleation in partially miscible systems: Free-energy surfaces and structures of nuclei from density functional calculations,” J. Chem. Phys. 111(12), 54855490 (1999).
http://dx.doi.org/10.1063/1.479809
27.
M. E. McKenzie and B. Chen, “Unravelling the peculiar nucleation mechanisms for non-ideal binary mixtures with atomistic simulations,” J. Phys. Chem. B 110(8), 35113516 (2006).
http://dx.doi.org/10.1021/jp0539472
28.
R. B. Nellas, M. E. McKenzie, and B. Chen, “Probing the nucleation mechanism for the binary n-nonane/1-alcohol series with atomistic simulations,” J. Phys. Chem. B 110(37), 1861918628 (2006).
http://dx.doi.org/10.1021/jp062388b
29.
R. B. Nellas, B. Chen, and J. Ilja Siepmann, “Dumbbells and onions in ternary nucleation,” Phys. Chem. Chem. Phys. 9(22), 27792781 (2007).
http://dx.doi.org/10.1039/b705385a
30.
V. I. Kalikmanov and D. G. Labetski, “Theory of anomalous critical-cluster content in high-pressure binary nucleation,” Phys. Rev. Lett. 98(8), 085701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.085701
31.
K. Yasuoka and M. Matsumoto, “Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid,” J. Chem. Phys. 109(19), 84518462 (1998).
http://dx.doi.org/10.1063/1.477509
32.
K. Yasuoka and M. Matsumoto, “Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water,” J. Chem. Phys. 109(19), 84638470 (1998).
http://dx.doi.org/10.1063/1.477510
33.
K. Yasuoka and X. C. Zeng, “Molecular dynamics of homogeneous nucleation in the vapor phase of Lennard-Jones. III. Effect of carrier gas pressure,” J. Chem. Phys. 126(12), 124320 (2007).
http://dx.doi.org/10.1063/1.2712436
34.
H. Matsubara et al., “Extended study of molecular dynamics simulation of homogeneous vapor-liquid nucleation of water,” J. Chem. Phys. 127(21), 214507 (2007).
http://dx.doi.org/10.1063/1.2803899
35.
T. Kraska, “Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble,” J. Chem. Phys. 124(5), 054507 (2006).
http://dx.doi.org/10.1063/1.2162882
36.
V. I. Kalikmanov, J. Wölk, and T. Kraska, “Argon nucleation: Bringing together theory, simulations, and experiment,” J. Chem. Phys. 128(12), 124506 (2008).
http://dx.doi.org/10.1063/1.2888995
37.
S. Braun and T. Kraska, “Dynamic structure of methane/n-nonane clusters during nucleation and growth,” J. Chem. Phys. 136(21), 214506 (2012).
http://dx.doi.org/10.1063/1.4723868
38.
K. K. Tanaka, A. Kawano, and H. Tanaka, “Molecular dynamics simulations of the nucleation of water: Determining the sticking probability and formation energy of a cluster,” J. Chem. Phys. 140(11), 114302 (2014).
http://dx.doi.org/10.1063/1.4867909
39.
K. K. Tanaka et al., “Free energy of cluster formation and a new scaling relation for the nucleation rate,” J. Chem. Phys. 140(19), 194310 (2014).
http://dx.doi.org/10.1063/1.4875803
40.
R. Angélil et al., “Properties of liquid clusters in large-scale molecular dynamics nucleation simulations,” J. Chem. Phys. 140(7), 074303 (2014).
http://dx.doi.org/10.1063/1.4865256
41.
R. Angélil et al., “Homogeneous SPC/E water nucleation in large molecular dynamics simulations,” J. Chem. Phys. 143(6), 064507 (2015).
http://dx.doi.org/10.1063/1.4928055
42.
C. T. R. Wilson, “Condensation of water vapour in the presence of dust-free air and other gases,” Philos. Trans. R. Soc., A 189, 265307 (1897).
http://dx.doi.org/10.1098/rsta.1897.0011
43.
C. T. R. Wilson, “On the condensation nuclei produced in gases by the action of Röntgen rays, uranium rays, ultra-violet light, and other agents,” Philos. Trans. R. Soc., A 192, 403453 (1899).
http://dx.doi.org/10.1098/rsta.1899.0009
44.
P. M. Winkler et al., “Effects of seed particle size and composition on heterogeneous nucleation of n-nonane,” Atmos. Res. 90(2-4), 187194 (2008).
http://dx.doi.org/10.1016/j.atmosres.2008.02.001
45.
M. Noppel et al., “Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. II. The generalized Laplace, Gibbs-Kelvin, and Young equations and application to nucleation,” J. Chem. Phys. 139(13), 134108 (2013).
http://dx.doi.org/10.1063/1.4822047
46.
A. Kupc et al., “Temperature dependence of heterogeneous nucleation of water vapor on Ag and NaCl particles,” AIP Conf. Proc. 1527, 274277 (2013).
http://dx.doi.org/10.1063/1.4803257
47.
Q. Li, J. K. Jiang, and J. M. Hao, “A review of aerosol nanoparticle formation from ions,” KONA Powder Part. J. 32, 5774 (2015).
http://dx.doi.org/10.14356/kona.2015013
48.
M. B. Enghoff and H. Svensmark, “The role of atmospheric ions in aerosol nucleation—A review,” Atmos. Chem. Phys. 8(16), 49114923 (2008).
http://dx.doi.org/10.5194/acp-8-4911-2008
49.
R. H. Heist and H. He, “Review of vapor to liquid homogeneous nucleation experiments from 1968 to 1992,” J. Phys. Chem. Ref. Data 23(5), 781805 (1994).
http://dx.doi.org/10.1063/1.555951
50.
R. A. Zahoransky, J. Hoschele, and J. Steinwandel, “Formation of argon clusters by homogeneous nucleation in supersonic shock-tube flow,” J. Chem. Phys. 103(20), 90389044 (1995).
http://dx.doi.org/10.1063/1.470014
51.
R. A. Zahoransky, J. Hoschele, and J. Steinwandel, “Homogeneous nucleation of argon in an unsteady hypersonic flow field,” J. Chem. Phys. 110(17), 88428843 (1999).
http://dx.doi.org/10.1063/1.478790
52.
A. Fladerer and R. Strey, “Homogeneous nucleation and droplet growth in supersaturated argon vapor: The cryogenic nucleation pulse chamber,” J. Chem. Phys. 124(16), 164710 (2006).
http://dx.doi.org/10.1063/1.2186327
53.
K. Iland et al., “Homogeneous nucleation of nitrogen,” J. Chem. Phys. 130(11), 114508 (2009).
http://dx.doi.org/10.1063/1.3078246
54.
S. Sinha et al., “Argon nucleation in a cryogenic supersonic nozzle,” J. Chem. Phys. 132(6), 064304 (2010).
http://dx.doi.org/10.1063/1.3299273
55.
A. Bhabhe and B. Wyslouzil, “Nitrogen nucleation in a cryogenic supersonic nozzle,” J. Chem. Phys. 135(24), 244311 (2011).
http://dx.doi.org/10.1063/1.3671453
56.
A. Ramos et al., “Quantitative study of cluster growth in free-jet expansions of CO2 by Rayleigh and Raman scattering,” Phys. Rev. A 72(5), 053204 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.053204
57.
H. K. N. Looijmans and H. M. E. van Dongen, “A pulse-expansion wave tube for nucleation studies at high pressures,” Exp. Fluids 23(1), 5463 (1997).
http://dx.doi.org/10.1007/s003480050086
58.
C. C. M. Luijten, P. Peeters, and M. E. H. van Dongen, “Nucleation at high pressure. II. Wave tube data and analysis,” J. Chem. Phys. 111(18), 85358544 (1999).
http://dx.doi.org/10.1063/1.480194
59.
M. Rusyniak et al., “Vapor phase homogeneous nucleation of higher alkanes: Dodecane, hexadecane, and octadecane. 1. Critical supersaturation and nucleation rate measurements,” J. Phys. Chem. B 105(47), 1186611872 (2001).
http://dx.doi.org/10.1021/jp012117v
60.
D. Ghosh et al., “Homogeneous nucleation of a homologous series of n-alkanes (CiH2i+2, i = 7 − 10) in a supersonic nozzle,” J. Chem. Phys. 132(2), 024307 (2010).
http://dx.doi.org/10.1063/1.3274629
61.
K. Iland et al., “Homogeneous nucleation rates of 1-pentanol,” J. Chem. Phys. 121(24), 1225912264 (2004).
http://dx.doi.org/10.1063/1.1809115
62.
J. Hrubý, Y. Viisanen, and R. Strey, “Homogeneous nucleation rates for n-pentanol in argon: Determination of the critical cluster size,” J. Chem. Phys. 104(13), 51815187 (1996).
http://dx.doi.org/10.1063/1.471145
63.
C. C. M. Luijten, O. D. E. Baas, and M. E. H. van Dongen, “Homogeneous nucleation rates for n-pentanol from expansion wave tube experiments,” J. Chem. Phys. 106(10), 4152 (1997).
http://dx.doi.org/10.1063/1.473125
64.
A. Bertelsmann and R. H. Heist, “Nucleation of 1-pentanol using a thermal diffusion cloud chamber,” Aerosol Sci. Technol. 28(3), 259268 (1998).
http://dx.doi.org/10.1080/02786829808965526
65.
V. Zdimal and J. Smolik, “Homogeneous nucleation rate measurements in 1-pentanol vapor with helium as a buffer gas,” Atmos. Res. 46(3-4), 391400 (1998).
http://dx.doi.org/10.1016/s0169-8095(97)00077-x
66.
M. M. Rudek et al., “Homogeneous nucleation rates of n-pentanol measured in an upward thermal diffusion cloud chamber,” J. Chem. Phys. 111(8), 36233629 (1999).
http://dx.doi.org/10.1063/1.479642
67.
M. P. Anisimov et al., “n-Pentanol-helium homogeneous nucleation rates,” J. Chem. Phys. 113(5), 19711975 (2000).
http://dx.doi.org/10.1063/1.482002
68.
A. Graßmann and F. Peters, “Homogeneous nucleation rates of n-pentanol in nitrogen measured in a piston-expansion tube,” J. Chem. Phys. 113(16), 67746781 (2000).
http://dx.doi.org/10.1063/1.1310597
69.
H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys. 114(22), 10031 (2001).
http://dx.doi.org/10.1063/1.1368131
70.
J. L. Schmitt and G. J. Doster, “Homogeneous nucleation of n-pentanol measured in an expansion cloud chamber,” J. Chem. Phys. 116(5), 19761978 (2002).
http://dx.doi.org/10.1063/1.1429953
71.
A. Graßmann and F. Peters, “Homogeneous nucleation rates of n-propanol in nitrogen measured in a piston-expansion tube,” J. Chem. Phys. 116(17), 76177620 (2002).
http://dx.doi.org/10.1063/1.1465400
72.
M. Gharibeh et al., “Homogeneous nucleation of n-propanol, n-butanol, and n-pentanol in a supersonic nozzle,” J. Chem. Phys. 122(9), 094512 (2005).
http://dx.doi.org/10.1063/1.1858438
73.
D. Brus et al., “Homogeneous nucleation rate measurements of 1-butanol in helium: A comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber,” J. Chem. Phys. 122(21), 214506 (2005).
http://dx.doi.org/10.1063/1.1917746
74.
D. Brus, V. Ždímal, and F. Stratmann, “Homogeneous nucleation rate measurements of 1-propanol in helium: The effect of carrier gas pressure,” J. Chem. Phys. 124(16), 164306 (2006).
http://dx.doi.org/10.1063/1.2185634
75.
D. Brus et al., “The homogeneous nucleation of 1-pentanol in a laminar flow diffusion chamber: The effect of pressure and kind of carrier gas,” J. Chem. Phys. 128(13), 134312 (2008).
http://dx.doi.org/10.1063/1.2901049
76.
A. P. Hyvarinen et al., “Erratum: ‘The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium’ [J. Chem. Phys. 124, 224304 (2006)],” J. Chem. Phys. 128(10), 109901 (2008).
http://dx.doi.org/10.1063/1.2840353
77.
D. Brus et al., “Erratum: ‘Homogeneous nucleation rate measurements of 1-butanol in helium: A comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber’ [J. Chem. Phys. 122, 214506 (2005)],” J. Chem. Phys. 128(7), 079901 (2008).
http://dx.doi.org/10.1063/1.2830800
78.
D. Ghosh et al., “Using small angle x-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions,” J. Chem. Phys. 129(12), 124302 (2008).
http://dx.doi.org/10.1063/1.2978384
79.
H. Laksmono, S. Tanimura, and B. E. Wyslouzil, “Methanol nucleation in a supersonic nozzle,” J. Chem. Phys. 135(7), 074305 (2011).
http://dx.doi.org/10.1063/1.3624756
80.
A. A. Manka et al., “Nucleation of ethanol, propanol, butanol, and pentanol: A systematic experimental study along the homologous series,” J. Chem. Phys. 137(5), 054316 (2012).
http://dx.doi.org/10.1063/1.4739096
81.
K. Mullick et al., “Isothermal nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzles: Critical cluster sizes and the role of coagulation,” J. Phys. Chem. B 119(29), 90099019 (2015).
http://dx.doi.org/10.1021/jp508335p
82.
J. A. Nuth et al., “Experimental studies of the vapor-phase nucleation of refractory compounds. III. The condensation of silver,” J. Chem. Phys. 85(2), 11161121 (1986).
http://dx.doi.org/10.1063/1.451307
83.
F. T. Ferguson, J. A. Nuth, and L. U. Lilleleht, “Experimental studies of the vapor phase nucleation of refractory compounds. IV. The condensation of magnesium,” J. Chem. Phys. 104(9), 32053210 (1996).
http://dx.doi.org/10.1063/1.471085
84.
F. T. Ferguson and J. A. Nuth, “Experimental studies of the vapor phase nucleation of refractory compounds. V. The condensation of lithium,” J. Chem. Phys. 113(10), 40934102 (2000).
http://dx.doi.org/10.1063/1.1288148
85.
D. M. Martinez et al., “Experimental studies of the vapor phase nucleation of refractory compounds. VI. The condensation of sodium,” J. Chem. Phys. 123(5), 054323 (2005).
http://dx.doi.org/10.1063/1.1998834
86.
A. Giesen, A. Kowalik, and P. Roth, “Iron-atom condensation interpreted by a kinetic model and a nucleation model approach,” Phase Transitions 77(1-2), 115129 (2004).
http://dx.doi.org/10.1080/01411590310001622473d
87.
M. Volmer and A. Weber, “Keimbildung in übersättigten gebilden,” Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 119(3-4), 277301 (1926).
88.
L. Farkas, “Keimbildungsgeschwindigkeit in übersättigten dämpfen,” Z. Phys. Chem. (Leipzig) 125, 236 (1927).
89.
R. Becker and W. Döring, “Kinetische Behandlung der keimbildung in übersättigten dämpfen,” Ann. Phys. 24, 719 (1935).
http://dx.doi.org/10.1002/andp.19354160806
90.
M. Volmer, Kinetik Der Phasenbildung (Steinkopff, Dresden, 1939).
91.
J. B. Zeldovich, “On the theory of new phase formation, cavitation,” Acta Physicochim. URSS 18(1), 122 (1943).
92.
J. Frenkel, Kinetic Theory of Liquids (Oxford University Press, London, 1946).
93.
J. Wölk et al., “Empirical function for homogeneous water nucleation rates,” J. Chem. Phys. 117(10), 49544960 (2002).
http://dx.doi.org/10.1063/1.1498465
94.
H. Reiss, “The kinetics of phase transitions in binary systems,” J. Chem. Phys. 18(6), 840848 (1950).
http://dx.doi.org/10.1063/1.1747784
95.
J. L. Katz, H. Saltsburg, and H. Reiss, “Nucleation in associated vapors,” J. Colloid Interface Sci. 21, 560568 (1966).
http://dx.doi.org/10.1016/0095-8522(66)90053-5
96.
J. O. Hirschfelder, “Kinetics of homogeneous nucleation on many-component systems,” J. Chem. Phys. 61(7), 26902694 (1974).
http://dx.doi.org/10.1063/1.1682400
97.
W. Studziński, G. H. Spiegel, and R. A. Zahoransky, “Binary nucleation and condensation in associated vapors,” J. Chem. Phys. 84(7), 40084014 (1986).
http://dx.doi.org/10.1063/1.450111
98.
A. Jaeckervoirol, P. Mirabel, and H. Reiss, “Hydrates in supersaturated binary sulfuric acid-water vapor: A reexamination,” J. Chem. Phys. 87(8), 48494852 (1987).
http://dx.doi.org/10.1063/1.452847
99.
F. Kuhrt, “Das Tröpfchenmodell realer Gase,” Z. Phys. 131, 185204 (1952).
http://dx.doi.org/10.1007/BF01332004
100.
J. Lothe and G. M. Pound, “Reconsiderations of nucleation theory,” J. Chem. Phys. 36(8), 2080 (1962).
http://dx.doi.org/10.1063/1.1732832
101.
M. Blander and J. L. Katz, “The thermodynamics of cluster formation in nucleation theory,” J. Chem. Phys. 4, 55 (1972).
http://dx.doi.org/10.1007/bf01008471
102.
S. L. Girshick and C. P. Chiu, “Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor,” J. Chem. Phys. 93(2), 12731277 (1990).
http://dx.doi.org/10.1063/1.459191
103.
K. Nishioka and I. Kusaka, “Thermodynamic formulas of liquid-phase nucleation from vapor in multicomponent systems,” J. Chem. Phys. 96(7), 53705376 (1992).
http://dx.doi.org/10.1063/1.462721
104.
G. Wilemski, “The Kelvin equation and self-consistent nucleation theory,” J. Chem. Phys. 103(3), 11191126 (1995).
http://dx.doi.org/10.1063/1.469822
105.
H. Reiss, W. K. Kegel, and J. L. Katz, “Resolution of the problems of replacement free energy, 1/S, and internal consistency in nucleation theory by consideration of the length scale for mixing entropy,” Phys. Rev. Lett. 78(23), 45064509 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4506
106.
A. Obeidat and G. Wilemski, “Gradient theory of nucleation in polar fluids,” Atmos. Res. 82(3-4), 481488 (2006).
http://dx.doi.org/10.1016/j.atmosres.2006.02.005
107.
J. Wedekind et al., “Unraveling the ‘pressure effect’ in nucleation,” Phys. Rev. Lett. 101(12), 125703 (2008).
http://dx.doi.org/10.1103/physrevlett.101.125703
108.
V. I. Kalikmanov, “Mean-field kinetic nucleation theory,” J. Chem. Phys. 124(12), 124505 (2006).
http://dx.doi.org/10.1063/1.2178812
109.
V. I. Kalikmanov, “Binary nucleation beyond capillarity approximation,” Phys. Rev. E 81(5), 050601 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.050601
110.
Ø. Wilhelmsen, D. Bedeaux, and D. Reguera, “Communication: Tolman length and rigidity constants of water and their role in nucleation,” J. Chem. Phys. 142(17), 171103 (2015).
http://dx.doi.org/10.1063/1.4919689
111.
X. C. Zeng and D. W. Oxtoby, “Binary homogeneous nucleation theory for the gas-liquid transition: A nonclassical approach,” J. Chem. Phys. 95(8), 59405947 (1991).
http://dx.doi.org/10.1063/1.461615
112.
X. C. Zeng and D. W. Oxtoby, “Gas-liquid nucleation in Lennard-Jones fluids,” J. Chem. Phys. 94(6), 44724478 (1991).
http://dx.doi.org/10.1063/1.460603
113.
C. L. Weakliem and H. Reiss, “Toward a molecular theory of vapor-phase nucleation. III. Thermodynamic properties of argon clusters from Monte-Carlo simulations and a modified liquid-drop theory,” J. Chem. Phys. 99(7), 53745383 (1993).
http://dx.doi.org/10.1063/1.465981
114.
C. L. Weakliem and H. Reiss, “Toward a molecular theory of vapor-phase nucleation. IV. Rate theory using the modified liquid-drop model,” J. Chem. Phys. 101(3), 23982406 (1994).
http://dx.doi.org/10.1063/1.467680
115.
B. Senger et al., “A molecular theory of the homogeneous nucleation rate. I. Formulation and fundamental issues,” J. Chem. Phys. 110(13), 64216437 (1999).
http://dx.doi.org/10.1063/1.478545
116.
D. Reguera et al., “Phase transitions in systems small enough to be clusters,” J. Chem. Phys. 118(1), 340 (2003).
http://dx.doi.org/10.1063/1.1524192
117.
R. Zandi, D. Reguera, and H. Reiss, “Nucleation rates in a new phenomenological model,” J. Phys. Chem. B 110, 22251 (2006).
http://dx.doi.org/10.1021/jp057418+
118.
J. Wedekind, D. Reguera, and R. Strey, “Finite-size effects in simulations of nucleation,” J. Chem. Phys. 125(21), 214505 (2006).
http://dx.doi.org/10.1063/1.2402167
119.
J. Wedekind and D. Reguera, “What is the best definition of a liquid cluster at the molecular scale?,” J. Chem. Phys. 127(15), 154516 (2007).
http://dx.doi.org/10.1063/1.2786457
120.
G. K. Schenter, S. M. Kathmann, and B. C. Garrett, “Dynamical nucleation theory: A new molecular approach to vapor-liquid nucleation,” Phys. Rev. Lett. 82(17), 34843487 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3484
121.
S. M. Kathmann, G. K. Schenter, and B. C. Garrett, “Multicomponent dynamical nucleation theory and sensitivity analysis,” J. Chem. Phys. 120(19), 91339141 (2004).
http://dx.doi.org/10.1063/1.1695323
122.
B. E. Wyslouzil and G. Wilemski, “Binary nucleation kinetics. II. Numerical-solution of the birth-death equations,” J. Chem. Phys. 103(3), 11371151 (1995).
http://dx.doi.org/10.1063/1.469824
123.
D. Kashchiev, “On the relation between nucleation work, nucleus size, and nucleation rate,” J. Chem. Phys. 76(10), 50985102 (1982).
http://dx.doi.org/10.1063/1.442808
124.
D. W. Oxtoby and D. Kashchiev, “A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation,” J. Chem. Phys. 100(10), 76657671 (1994).
http://dx.doi.org/10.1063/1.466859
125.
R. Strey and Y. Viisanen, “Measurement of the molecular content of binary nuclei. Use of the nucleation rate surface for ethanol-hexanol,” J. Chem. Phys. 99(6), 46934704 (1993).
http://dx.doi.org/10.1063/1.466067
126.
R. Strey, P. E. Wagner, and Y. Viisanen, “The problem of measuring homogeneous nucleation rates and the molecular contents of nuclei: Progress in the form of nucleation pulse measurements,” J. Phys. Chem. 98(32), 77487758 (1994).
http://dx.doi.org/10.1021/j100083a003
127.
Y. Viisanen et al., “Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water-ethanol,” J. Chem. Phys. 100(8), 60626072 (1994).
http://dx.doi.org/10.1063/1.467117
128.
R. Strey, Y. Viisanen, and P. E. Wagner, “Measurement of the molecular content of binary nuclei. III. Use of the nucleation rate surfaces for the water-n-alcohol series,” J. Chem. Phys. 103(10), 43334345 (1995).
http://dx.doi.org/10.1063/1.470672
129.
I. J. Ford, “Thermodynamic properties of critical clusters from measurements of vapour-liquid homogeneous nucleation rates,” J. Chem. Phys. 105(18), 83248332 (1996).
http://dx.doi.org/10.1063/1.472687
130.
I. J. Ford, “Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory,” Phys. Rev. E 56(5), 56155629 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.5615
131.
R. McGraw and D. T. Wu, “Kinetic extensions of the nucleation theorem,” J. Chem. Phys. 118(20), 93379347 (2003).
http://dx.doi.org/10.1063/1.1565098
132.
D. Kashchiev, “Forms and applications of the nucleation theorem,” J. Chem. Phys. 125(1), 014502 (2006).
http://dx.doi.org/10.1063/1.2210483
133.
H. Vehkamäki and I. J. Ford, “Analysis of water-ethanol nucleation rate data with two component nucleation theorems,” J. Chem. Phys. 113(8), 32613269 (2000).
http://dx.doi.org/10.1063/1.1286965
134.
H. Vehkamäki and I. J. Ford, “Excess energies of n- and i-octane molecular clusters,” J. Chem. Phys. 114(13), 55095513 (2001).
http://dx.doi.org/10.1063/1.1351874
135.
J. Wölk and R. Strey, “Homogeneous nucleation of H2O and D2O in comparison: The isotope effect,” J. Phys. Chem. B 105(47), 1168311701 (2001).
http://dx.doi.org/10.1021/jp0115805
136.
E. F. Allard and J. L. Kassner, “New cloud-chamber method for determination of homogeneous nucleation rates,” J. Chem. Phys. 42(4), 1401 (1965).
http://dx.doi.org/10.1063/1.1696129
137.
A. Langsdorf, “A continuously sensitive diffusion cloud chamber,” Rev. Sci. Instrum. 10(3), 91103 (1939).
http://dx.doi.org/10.1063/1.1751494
138.
J. L. Katz and B. J. Ostermier, “Diffusion cloud-chamber investigation of homogeneous nucleation,” J. Chem. Phys. 47(2), 478 (1967).
http://dx.doi.org/10.1063/1.1711920
139.
R. H. Heist and H. Reiss, “Investigation of the homogeneous nucleation of water vapor using a diffusion cloud chamber,” J. Chem. Phys. 59, 665 (1973).
http://dx.doi.org/10.1063/1.1680073
140.
D. Kane and M. S. ElShall, “Condensation of supersaturated vapors of hydrogen bonding molecules: Ethylene glycol, propylene glycol, trimethylene glycol, and glycerol,” J. Chem. Phys. 105(17), 76177631 (1996).
http://dx.doi.org/10.1063/1.472548
141.
H. V. Nguyen et al., “Homogeneous and heterogeneous nucleation in a laminar-flow aerosol generator,” J. Colloid Interface Sci. 119(2), 491504 (1987).
http://dx.doi.org/10.1016/0021-9797(87)90295-5
142.
K. Hameri et al., “Homogeneous nucleation in a laminar flow diffusion chamber: The operation principles and possibilities for quantitative rate measurements,” J. Chem. Phys. 105(17), 76837695 (1996).
http://dx.doi.org/10.1063/1.472551
143.
V. Vohra and R. H. Heist, “The flow diffusion nucleation chamber: A quantitative tool for nucleation research,” J. Chem. Phys. 104(1), 382395 (1996).
http://dx.doi.org/10.1063/1.470837
144.
H. Lihavainen and Y. Viisanen, “A laminar flow diffusion chamber for homogeneous nucleation studies,” J. Phys. Chem. B 105(47), 1161911629 (2001).
http://dx.doi.org/10.1021/jp011189j
145.
V. B. Mikheev et al., “The laminar flow tube reactor as a quantitative tool for nucleation studies: Experimental results and theoretical analysis of homogeneous nucleation of dibutylphthalate,” J. Chem. Phys. 113(9), 37043718 (2000).
http://dx.doi.org/10.1063/1.1287598
146.
V. B. Mikheev et al., “Laboratory measurement of water nucleation using a laminar flow tube reactor,” J. Chem. Phys. 116(24), 1077210786 (2002).
http://dx.doi.org/10.1063/1.1480274
147.
J. A. Nuth and B. Donn, “Experimental studies of the vapor-phase nucleation of refractory compounds. I. The condensation of SiO,” J. Chem. Phys. 77(5), 26392646 (1982).
http://dx.doi.org/10.1063/1.444109
148.
J. A. Nuth and B. Donn, “Experimental studies of the vapor-phase nucleation of refractory compounds. II. The condensation of an amorphous magnesium-silicate,” J. Chem. Phys. 78(3), 16181620 (1983).
http://dx.doi.org/10.1063/1.444859
149.
A. A. Manka et al., “Homogeneous water nucleation in a laminar flow diffusion chamber,” J. Chem. Phys. 132(24), 244505 (2010).
http://dx.doi.org/10.1063/1.3427537
150.
T. Trávníčková, J. Havlica, and V. Ždímal, “Description of fluid dynamics and coupled transports in models of a laminar flow diffusion chamber,” J. Chem. Phys. 139, 064701 (2013).
http://dx.doi.org/10.1063/1.4816963
151.
J. L. Schmitt, “Precision expansion cloud chamber for homogeneous nucleation studies,” Rev. Sci. Instrum. 52(11), 1749 (1981).
http://dx.doi.org/10.1063/1.1136524
152.
R. Strey and P. E. Wagner, “Homogeneous nucleation rates measured in a 2-piston expansion chamber,” J. Aerosol Sci. 12(3), 199201 (1981).
http://dx.doi.org/10.1016/0021-8502(81)90093-8
153.
P. E. Wagner and R. Strey, “Homogeneous nucleation rates of water-vapor measured in a 2-piston expansion chamber,” J. Phys. Chem. 85(18), 26942698 (1981).
http://dx.doi.org/10.1021/j150618a026
154.
Y. Viisanen and R. Strey, “Composition of critical clusters in ternary nucleation of water-n-nonane-n-butanol,” J. Chem. Phys. 105(18), 82938299 (1996).
http://dx.doi.org/10.1063/1.472683
155.
Y. Viisanen, P. E. Wagner, and R. Strey, “Measurement of the molecular content of binary nuclei. IV. Use of the nucleation rate surfaces for the n-nonane-n-alcohol series,” J. Chem. Phys. 108(10), 42574266 (1998).
http://dx.doi.org/10.1063/1.475825
156.
P. E. Wagner and R. Strey, “Two-pathway homogeneous nucleation in supersaturated water–n-nonane vapor mixtures,” J. Phys. Chem. B 105(47), 1165611661 (2001).
http://dx.doi.org/10.1021/jp011460x
157.
A. Manka et al., “Preliminary results on honogeneouse nucleation of water: A novel measurement technique using the two-valve expansion chamber,” in Nucleation Atmospheric Aerosols: 17th International Conference, Galway, Ireland, 2007, edited byC. D. O’Dowd and P. E. Wagner (Springer, 2007), p. 260.
http://dx.doi.org/10.1007/978-1-4020-6475-3_54
158.
P. Wegener and G. Lundquist, “Condensation of water vapor in the shock tube below 150-degrees-K,” J. Appl. Phys. 22(2), 233 (1951).
http://dx.doi.org/10.1063/1.1699931
159.
F. Peters, “A new method to mesure homogeneous nucleation rates in shock tubes,” Exp. Fluids 1, 143148 (1983).
http://dx.doi.org/10.1007/BF00272013
160.
K. N. H. Looijmans and M. E. H. van Dongen, “A pulse-expansion wave tube for nucleation studies at high pressures,” Exp. Fluids 23(1), 5463 (1997).
http://dx.doi.org/10.1007/s003480050086
161.
K. N. H. Looijmans, P. C. Kriesels, and M. E. H. van Dongen, “Gasdynamic aspects of a modified expansion-shock tube for nucleation and condensation studies,” Exp. Fluids 15(1), 6164 (1993).
http://dx.doi.org/10.1007/BF00195596
162.
T. Rodemann and F. Peters, “Experimental investigation of binary nucleation rates of water-n-propanol and water-n-butanol vapors by means of a pex-tube,” J. Chem. Phys. 105(12), 51685176 (1996).
http://dx.doi.org/10.1063/1.472361
163.
K. Oswatitsch, “Kondensationserscheinungen in überschalldüsen,” Z. Angew. Math. Mech. 22(1), 114 (1942).
http://dx.doi.org/10.1002/zamm.19420220102
164.
P. P. Wegener, “Nonequilibrium flow with condensation,” Acta Mech. 21(1), 6591 (1975).
http://dx.doi.org/10.1007/BF01172829
165.
B. J. C. Wu, P. P. Wegener, and G. D. Stein, “Homogeneous nucleation of argon carried in helium in supersonic nozzle-flow,” J. Chem. Phys. 69(4), 17761777 (1978).
http://dx.doi.org/10.1063/1.436711
166.
P. P. Wegener and B. J. C. Wu, “Homogeneous and binary nucleation: New experimental results and comparison with theory,” Faraday Discuss. Chem. Soc. 61, 7782 (1976).
http://dx.doi.org/10.1039/dc9766100077
167.
H. Pathak et al., “Nonisothermal droplet growth in the free molecular regime,” Aerosol Sci. Technol. 47(12), 13101324 (2013).
http://dx.doi.org/10.1080/02786826.2013.839980
168.
A. Khan et al., “Homogeneous nucleation rates for D2O in a supersonic Laval nozzle,” J. Chem. Phys. 119(6), 31383147 (2003).
http://dx.doi.org/10.1063/1.1590640
169.
B. E. Wyslouzil et al., “Small angle X-ray scattering measurements probe water nanodroplet evolution under highly non-equilibrium conditions,” Phys. Chem. Chem. Phys. 9, 5353 (2007);
http://dx.doi.org/10.1039/b709363b
Erratum B. E. Wyslouzil, et al., Phys. Chem. Chem. Phys. 10(48), 73277328 (2008).
170.
S. Tanimura, H. Pathak, and B. E. Wyslouzil, “Binary nucleation rates for ethanol/water mixtures in supersonic Laval nozzles: Analyses by the first and second nucleation theorems,” J. Chem. Phys. 139(17), 174311 (2013).
http://dx.doi.org/10.1063/1.4826652
171.
H. Pathak et al., “Co-condensation of nonane and D2O in a supersonic nozzle,” J. Chem. Phys. 140(3), 034304 (2014).
http://dx.doi.org/10.1063/1.4861052
172.
V. P. Modak et al., “Experimental evidence for surface freezing in supercooled n-alkane nanodroplets,” Phys. Chem. Chem. Phys. 15(18), 67836795 (2013).
http://dx.doi.org/10.1039/c3cp44490b
173.
A. Manka et al., “Freezing water in no-man’s land,” Phys. Chem. Chem. Phys. 14(13), 45054516 (2012).
http://dx.doi.org/10.1039/c2cp23116f
174.
A. Bhabhe, H. Pathak, and B. E. Wyslouzil, “Freezing of heavy water (D2O) nanodroplets,” J. Phys. Chem. A 117(26), 54725482 (2013).
http://dx.doi.org/10.1021/jp400070v
175.
S. Tanimura et al., “Temperature and gas-phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy: The effect of condensation on the boundary-layer thickness,” J. Chem. Phys. 122(19), 194304 (2005).
http://dx.doi.org/10.1063/1.1900084
176.
S. Tanimura, B. E. Wyslouzil, and G. Wilemski, “CH3CH2OD/D2O binary condensation in a supersonic Laval nozzle: Presence of small clusters inferred from a macroscopic energy balance,” J. Chem. Phys. 132(14), 144301 (2010).
http://dx.doi.org/10.1063/1.3360304
177.
P. Paci et al., “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121(20), 99649970 (2004).
http://dx.doi.org/10.1063/1.1807377
178.
Y. J. Kim et al., “Isothermal nucleation rates in supersonic nozzles and the properties of small water clusters,” J. Phys. Chem. A 108(20), 43654377 (2004).
http://dx.doi.org/10.1021/jp037030j
179.
K. A. Streletzky et al., “Controlling nucleation and growth of nanodroplets in supersonic nozzles,” J. Chem. Phys. 116(10), 40584070 (2002).
http://dx.doi.org/10.1063/1.1446031
180.
R. J. Balla, M. N. Rhode, and J. L. Everhart, “Supersaturation total temperature, pitot pressure, and Rayleigh scattering measurements at Mach 10,” AIAA J. 52(7), 14521465 (2014).
http://dx.doi.org/10.2514/1.J052608
181.
R. J. Balla and J. L. Everhart, “Rayleigh scattering density measurements, cluster theory, and nucleation calculations at Mach 10,” AIAA J. 50(3), 698707 (2012).
http://dx.doi.org/10.2514/1.J051334
182.
R. J. Balla, “Mach 10 Rayleigh scattering gas-cap density, pressure, and shock-jump measurements,” AIAA J. 53(3), 756762 (2015).
http://dx.doi.org/10.2514/1.J053698
183.
M. J. Ezell et al., “Aerosol fast flow reactor for laboratory studies of new particle formation,” J. Aerosol Sci. 78, 3040 (2014).
http://dx.doi.org/10.1016/j.jaerosci.2014.08.009
184.
H. H. Chen et al., “New particle formation and growth from methanesulfonic acid, trimethylamine and water,” Phys. Chem. Chem. Phys. 17(20), 1369913709 (2015).
http://dx.doi.org/10.1039/C5CP00838G
185.
S. K. Friedlander, R. S. Windeler, and A. P. Weber, “Vapor phase synthesis of nanostructured materials ultrafine particle formation by aerosol processes in turbulent jets: Mechanisms and scale-up,” Nanostruct. Mater. 4(5), 521528 (1994).
http://dx.doi.org/10.1016/0965-9773(94)90059-0
186.
W. I. Higuchi and C. T. O’Konski, “A test of the becker-doering theory of nucleation kinetics,” J. Colloid Sci. 15(1), 1449 (1960).
http://dx.doi.org/10.1016/0095-8522(60)90003-9
187.
T. K. Lesniewski and S. K. Friedlander, “Particle nucleation and growth in a free turbulent jet,” Proc. R. Soc. A 454(1977), 24772504 (1998).
http://dx.doi.org/10.1098/rspa.1998.0267
188.
I. Pesmazoglou, A. M. Kempf, and S. Navarro-Martinez, “Aerosol nucleation in a turbulent jet using large eddy simulations,” Chem. Eng. Sci. 116, 383397 (2014).
http://dx.doi.org/10.1016/j.ces.2014.05.022
189.
K. Okuyama et al., “Homogeneous nucleation by continuous mixing of high temperature vapor with room temperature gas,” Aerosol Sci. Technol. 6(1), 1527 (1987).
http://dx.doi.org/10.1080/02786828708959116
190.
B. E. Wyslouzil et al., “Binary nucleation in acid water-systems. I. Methanesulfonic-acid water,” J. Chem. Phys. 94(10), 68276841 (1991).
http://dx.doi.org/10.1063/1.460261
191.
B. E. Wyslouzil et al., “Binary nucleation in acid water-systems. II. Sulfuric-acid water and a comparison with methanesulfonic-acid water,” J. Chem. Phys. 94(10), 68426850 (1991).
http://dx.doi.org/10.1063/1.460262
192.
S. M. Kreidenweis et al., “Binary nucleation of methanesulfonic acid and water,” J. Aerosol Sci. 20(5), 585607 (1989).
http://dx.doi.org/10.1016/0021-8502(89)90105-5
193.
S. M. Ball et al., “Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors,” J. Geophys. Res.: Atmos. 104(D19), 2370923718, doi:10.1029/1999JD900411 (1999).
http://dx.doi.org/10.1029/1999JD900411
194.
B. Panta et al., “Computational fluid dynamics of a cylindrical nucleation flow reactor with detailed cluster thermodynamics,” J. Phys. Chem. A 116(41), 1012210134 (2012).
http://dx.doi.org/10.1021/jp302444y
195.
D. Brus, V. Ždímal, and H. Uchtmann, “Homogeneous nucleation rate measurements in supersaturated water vapor II,” J. Chem. Phys. 131(7), 074507 (2009).
http://dx.doi.org/10.1063/1.3211105
196.
C. H. Heath et al., “D2O-H2O condensation in supersonic nozzles: I. Experiments,” AIP Conf. Proc. 534, 5962 (2000).
http://dx.doi.org/10.1063/1.1361813
197.
J. Smolík and P. E. Wagner, “Joint experiments on homogeneous nucleation measurements of homogeneous nucleation rates in supersaturated n-pentanol vapor,” inNucleation Atmospheric Aerosols, edited by M. Kulmala and P. E. Wagner (Pergamon, Oxford, 1996), p. 58.
198.
H. Lihavainen, Y. Viisanen, and M. Kulmala, “Erratum: Homogeneouse nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys. 128(13), 139902 (2008).
http://dx.doi.org/10.1063/1.2890970
199.
M. A. L. J. Fransen et al., “On the effect of pressure and carrier gas on homogeneous water nucleation,” J. Chem. Phys. 142(16), 164307 (2015).
http://dx.doi.org/10.1063/1.4919249
200.
V. Holten, D. G. Labetski, and M. E. H. van Dongen, “Homogeneous nucleation of water between 200 and 240 K: New wave tube data and estimation of the Tolman length,” J. Chem. Phys. 123, 104505 (2005).
http://dx.doi.org/10.1063/1.2018638
201.
C. C. M. Luijten, K. J. Bosschaart, and M. E. H. van Dongen, “High pressure nucleation in water/nitrogen systems,” J. Chem. Phys. 106(19), 81168123 (1997).
http://dx.doi.org/10.1063/1.473818
202.
R. C. Miller et al., “Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate,” J. Chem. Phys. 78(6), 32043211 (1983).
http://dx.doi.org/10.1063/1.445236
203.
D. Brus, V. Zdimal, and J. Smolik, “Homogeneous nucleation rate measurements in supersaturated water vapor,” J. Chem. Phys. 129(17), 174501 (2008).
http://dx.doi.org/10.1063/1.3000629
204.
D. Brus, V. Zdimal, and J. Smolik, “Erratum: ‘Homogeneous nucleation rate measurements in supersaturated water vapor’ [J. Chem. Phys. 129, 174501 (2008)],” J. Chem. Phys. 130(21), 219902 (2009).
http://dx.doi.org/10.1063/1.3151622
205.
C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys. 90(3), 18561865 (1989).
http://dx.doi.org/10.1063/1.456027
206.
B. N. Hale, “Application of a scaled homogeneous nucleation-rate formalism to experimental-data at T less-than Tc,” Phys. Rev. A 33(6), 41564163 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.4156
207.
B. N. Hale, “The scaling of nucleation rates,” Metall. Trans. A 23(7), 18631868 (1992).
http://dx.doi.org/10.1007/BF02647536
208.
S. Sinha, B. E. Wyslouzil, and G. Wilemski, “Modeling of H2O/D2O condensation in supersonic nozzles,” Aerosol Sci. Technol. 43(1), 924 (2009).
http://dx.doi.org/10.1080/02786820802441771
209.
K. Iland et al., “Argon nucleation in a cryogenic nucleation pulse chamber,” J. Chem. Phys. 127, 154506 (2007).
http://dx.doi.org/10.1063/1.2764486
210.
J. Wölk, “Homogene keimbildung von H2O und D2O,” in Mathematisch-Naturwissenschaftliche Fakultät (Universität zu Köln, Köln, 2001).
211.
B. Chen, J. I. Siepmann, and M. L. Klein, “Simulating the nucleation of water/ethanol and water/n-nonane mixtures: Mutual enhancement and two-pathway mechanism,” J. Am. Chem. Soc. 125(10), 31133118 (2003).
http://dx.doi.org/10.1021/ja029006+
212.
P. Mirabel and J. L. Katz, “Condensation of a supersaturated vapor. IV. Homogeneous nucleation of binary-mixtures,” J. Chem. Phys. 67(4), 16971704 (1977).
http://dx.doi.org/10.1063/1.435004
213.
P. Peeters, J. Hrubý, and M. E. H. van Dongen, “High pressure nucleation experiments in binary and ternary mixtures,” J. Phys. Chem. B 105(47), 1176311771 (2001).
http://dx.doi.org/10.1021/jp011670+
214.
B. N. Hale and G. Wilemski, “A scaled nucleation model for ideal binary systems,” Chem. Phys. Lett. 305(3-4), 263268 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00365-6
215.
O. Wilhelmsen, D. Bedeaux, and D. Reguera, “Response to ‘Comment on “Communication: Tolman length and rigidity constants of water and their role in nucleation”’ [J. Chem. Phys. 143, 217101 (2015)],” J. Chem. Phys. 143(21), 217102 (2015).
http://dx.doi.org/10.1063/1.4936663
216.
Y. Viisanen, R. Strey, and H. Reiss, “Homogeneous nucleation rates for water,” J. Chem. Phys. 99(6), 46804692 (1993).
http://dx.doi.org/10.1063/1.466066
217.
Y. Viisanen, R. Strey, and H. Reiss, “Erratum: ‘Homogeneous nucleation rates for water’ [J. Chem. Phys. 99, 4680 (1993)],” J. Chem. Phys. 112(18), 82058206 (2000).
http://dx.doi.org/10.1063/1.481368
218.
J. Feder et al., “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15(57), 111178 (1966).
http://dx.doi.org/10.1080/00018736600101264
219.
I. J. Ford, “Imperfect vapor gas-mixtures and homogeneous nucleation,” J. Aerosol Sci. 23(5), 447455 (1992).
http://dx.doi.org/10.1016/0021-8502(92)90016-O
220.
D. W. Oxtoby and A. Laaksonen, “Some consequences of the nucleation theorem for binary fluids,” J. Chem. Phys. 102(17), 68466850 (1995).
http://dx.doi.org/10.1063/1.469121
221.
D. Kashchiev, “Effect of carrier-gas pressure on nucleation,” J. Chem. Phys. 104(21), 86718677 (1996).
http://dx.doi.org/10.1063/1.471556
222.
O. V. Vasilev and H. Reiss, “Effect of the attractive potential of a drop in vapor phase nucleation,” Phys. Rev. E 54(4), 39503954 (1996).
http://dx.doi.org/10.1103/physreve.54.3950
223.
O. V. Vasilev and H. Reiss, “Capture of vapor molecules by a realistic attraction potential of a drop,” J. Chem. Phys. 105(7), 29462947 (1996).
http://dx.doi.org/10.1063/1.472161
224.
P. E. Wagner, R. Strey, and Y. Viisanen, “The effect of carrier gas pressure on homogeneous nucleation rates in supersaturated vapors,” in Nucleation and Atmospheric Aerosols, edited by N. Fukuta and P. E. Wagner (A. Deepak Publishing, Hampton, VA, 1992), p. 27.
225.
B. E. Wyslouzil et al., “Effect of carrier gas-pressure on condensation in a supersonic nozzle,” Phys. Fluids 6(8), 28452854 (1994).
http://dx.doi.org/10.1063/1.868107
226.
R. H. Heist, M. Janjua, and J. Ahmed, “Effects of background gases on the homogeneous nucleation of vapors. 1,” J. Phys. Chem. 98(16), 44434453 (1994).
http://dx.doi.org/10.1021/j100067a035
227.
R. H. Heist, J. Ahmed, and M. Janjua, “Effects of background gases on the homogeneous nucleation of vapors. 2,” J. Phys. Chem. 99(1), 375383 (1995).
http://dx.doi.org/10.1021/j100001a056
228.
A. Bertelsmann, R. Stuczynski, and R. H. Heist, “Effects of background gases on the homogeneous nucleation of vapors. 3,” J. Phys. Chem. 100(23), 97629773 (1996).
http://dx.doi.org/10.1021/jp960192d
229.
D. Kane et al., “The effect of carrier gas pressure on vapor phase nucleation experiments using a thermal diffusion cloud chamber,” J. Chem. Phys. 111(18), 84968502 (1999).
http://dx.doi.org/10.1063/1.480190
230.
F. T. Fergusson, R. H. Heist, and J. A. I. Nuth, “The effect of carrier gas pressure and wall heating on the operation of the thermal diffusion cloud chamber,” J. Chem. Phys. 115(23), 10829 (2001).
http://dx.doi.org/10.1063/1.1409956
231.
F. T. Ferguson, R. H. Heist, and J. A. Nuth, “The influence of buoyant convection on the nucleation of n-propanol in thermal diffusion cloud chambers,” J. Chem. Phys. 132(20), 204510 (2010).
http://dx.doi.org/10.1063/1.3429618
232.
H. Görke et al., “Homogenous nucleation rates of n-propanol measured in the laminar flow diffusion chamber at different total pressures,” J. Chem. Phys. 140(17), 174301 (2014).
http://dx.doi.org/10.1063/1.4872364
233.
J. H. Zollner et al., “Sulfuric acid nucleation: Power dependencies, variation with relative humidity, and effect of bases,” Atmos. Chem. Phys. 12(10), 43994411 (2012).
http://dx.doi.org/10.5194/acp-12-4399-2012
234.
K. Neitola et al., “Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies,” Atmos. Chem. Phys. 15(6), 34293443 (2015).
http://dx.doi.org/10.5194/acp-15-3429-2015
235.
P. Mirabel and J. L. Clavelin, “Experimental-study of nucleation in binary-mixtures: Nitric acid water and sulfuric acid water systems,” J. Chem. Phys. 68(11), 50205027 (1978).
http://dx.doi.org/10.1063/1.435617
236.
Y. Viisanen, M. Kulmala, and A. Laaksonen, “Experiments on gas-liquid nucleation of sulfuric acid and wafer,” J. Chem. Phys. 107(3), 920926 (1997).
http://dx.doi.org/10.1063/1.474445
237.
D. Brus et al., “Homogeneous nucleation of sulfuric acid and water mixture: Experimental setup and first results,” Atmos. Chem. Phys. 10(6), 26312641 (2010).
http://dx.doi.org/10.5194/acp-10-2631-2010
238.
D. Brus et al., “Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions,” Atmos. Chem. Phys. 11(11), 52775287 (2011).
http://dx.doi.org/10.5194/acp-11-5277-2011
239.
C. N. Jen, P. H. McMurry, and D. R. Hanson, “Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine,” J. Geophys. Res.: Atmos. 119(12), 75027514, doi:10.1002/2014JD021592 (2014).
http://dx.doi.org/10.1002/2014JD021592
240.
W. A. Glasoe et al., “Sulfuric acid nucleation: An experimental study of the effect of seven bases,” J. Geophys. Res.: Atmos. 120(5), 19331950, doi:10.1002/2014JD022730 (2015).
http://dx.doi.org/10.1002/2014JD022730
241.
D. R. Hanson and F. L. Eisele, “Measurement of prenucleation molecular clusters in the NH3, H2SO4, H2O system,” J. Geophys. Res.: Atmos. 107(D12), 4158, doi:10.1029/2001JD001100 (2002).
http://dx.doi.org/10.1029/2001JD001100
242.
D. R. Benson et al., “Laboratory-measured nucleation rates of sulfuric acid and water binary homogeneous nucleation from the SO2 + OH reaction,” Geophys. Res. Lett. 35(11), L11801, doi:10.1029/2008GL033387 (2008).
http://dx.doi.org/10.1029/2008GL033387
243.
D. R. Benson, M. E. Erupe, and S. H. Lee, “Laboratory-measured H2SO4-H2O-NH3 ternary homogeneous nucleation rates: Initial observations,” Geophys. Res. Lett. 36, L15818, doi:10.1029/2009GL038728 (2009).
http://dx.doi.org/10.1029/2009GL038728
244.
J. Kirkby et al., “Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation,” Nature 476(7361), 429 (2011).
http://dx.doi.org/10.1038/nature10343
245.
T. Berndt et al., “Laboratory study on new particle formation from the reaction OH + SO2: Influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process,” Atmos. Chem. Phys. 10(15), 71017116 (2010).
http://dx.doi.org/10.5194/acp-10-7101-2010
246.
M. Sipila et al., “The role of sulfuric acid in atmospheric nucleation,” Science 327(5970), 12431246 (2010).
http://dx.doi.org/10.1126/science.1180315
247.
A. Metzger et al., “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U. S. A. 107(15), 66466651 (2010).
http://dx.doi.org/10.1073/pnas.0911330107
248.
H. H. Chen et al., “Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in air,” J. Phys. Chem. B 120(8), 15261536 (2016).
http://dx.doi.org/10.1021/acs.jpcb.5b07433
249.
H. Laksmono et al., “Monomer, clusters, liquid: An integrated spectroscopic study of methanol condensation,” Phys. Chem. Chem. Phys. 13(13), 58555871 (2011).
http://dx.doi.org/10.1039/c0cp02485f
250.
A. Kürten et al., “Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions,” Proc. Natl. Acad. Sci. U. S. A. 111(42), 1501915024 (2014).
http://dx.doi.org/10.1073/pnas.1404853111
251.
F. Riccobono et al., “Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles,” Science 344(6185), 717721 (2014).
http://dx.doi.org/10.1126/science.1243527
252.
B. L. Yoder et al., “Sizer for neutral weakly bound ultrafine aerosol particles based on sodium doping and mass spectrometric detection,” J. Phys. Chem. Lett. 2(20), 26232628 (2011).
http://dx.doi.org/10.1021/jz201086v
253.
B. Schlappi et al., “A pulsed uniform laval expansion coupled with single photon ionization mass spectrometric detection for the study of large molecular aggregates,” Phys. Chem. Chem. Phys. 17(39), 2576125771 (2015).
http://dx.doi.org/10.1039/c5cp00061k
254.
J. J. Ferreiro et al., “Can we observe gas phase nucleation at the molecular level?,” Z. Phys. Chem. 229(10-12), 17651780 (2015).
http://dx.doi.org/10.1515/zpch-2015-0603
255.
J. J. Ferreiro et al., “Observation of propane cluster size distributions during nucleation and growth in a Laval expansion,” J. Chem. Phys. 145(21), 211907 (2016).
http://dx.doi.org/10.1063/1.4960050
256.
V. Loukonen et al., “Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water—A computational study,” Atmos. Chem. Phys. 10(10), 49614974 (2010).
http://dx.doi.org/10.5194/acp-10-4961-2010
257.
M. L. Dawson et al., “Amine-amine exchange in aminium-methanesulfonate aerosols,” J. Phys. Chem. C 118(50), 2943129440 (2014).
http://dx.doi.org/10.1021/jp506560w
258.
R. Strey, T. Schmeling, and P. E. Wagner, “The effect of the heat of association on homogeneous nucleation rates in methanol vapor,” J. Chem. Phys. 85(10), 61926196 (1986).
http://dx.doi.org/10.1063/1.451486
259.
F. Peters and B. Paikert, “Experimental results on the rate of nucleation in supersaturated n-propanol, ethanol, and methanol vapors,” J. Chem. Phys. 91(9), 56725678 (1989).
http://dx.doi.org/10.1063/1.457520
260.
J. K. Jiang et al., “First measurements of neutral atmospheric cluster and 1-2 nm particle number size distributions during nucleation events,” Aerosol Sci. Technol. 45(4), iiv (2011).
http://dx.doi.org/10.1080/02786826.2010.546817
261.
J. K. Jiang et al., “Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm,” Aerosol Sci. Technol. 45(4), 510521 (2011).
http://dx.doi.org/10.1080/02786826.2010.547538
262.
J. Zhao et al., “Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster-CIMS,” J. Geophys. Res.: Atmos. 115, D08205, doi:10.1029/2009jd012606 (2010).
http://dx.doi.org/10.1029/2009jd012606
263.
C. N. Jen, D. R. Hanson, and P. H. McMurry, “Toward reconciling measurements of atmospherically relevant clusters by chemical ionization mass spectrometry and mobility classification/vapor condensation,” Aerosol Sci. Technol. 49(1), iiii (2015).
http://dx.doi.org/10.1080/02786826.2014.1002602
264.
J. Duplissy et al., “Results from the CERN pilot CLOUD experiment,” Atmos. Chem. Phys. 10(4), 16351647 (2010).
http://dx.doi.org/10.5194/acp-10-1635-2010
265.
S. Schobesberger et al., “On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation,” Atmos. Chem. Phys. 15(1), 5578 (2015).
http://dx.doi.org/10.5194/acp-15-55-2015
266.
J. Kirkby et al., “Ion-induced nucleation of pure biogenic particles,” Nature 533(7604), 521526 (2016).
http://dx.doi.org/10.1038/nature17953
267.
J. Duplissy et al., “Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory,” J. Geophys. Res.: Atmos. 121(4), 17521775, doi:10.1002/2015JD023539 (2016).
http://dx.doi.org/10.1002/2015JD023539
268.
P. Peeters, J. J. H. Gielis, and M. E. H. van Dongen, J. Chem. Phys. 117, 56475653 (2002).
http://dx.doi.org/10.1063/1.1501885
269.
M. A. L. J. Fransen et al., “On the growth of homogeneously nucleated water droplets in nitrogen: An experimental study,” Exp. Fluids 55, 1780 (2014).
http://dx.doi.org/10.1007/s00348-014-1780-y
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/21/10.1063/1.4962283
Loading
/content/aip/journal/jcp/145/21/10.1063/1.4962283
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/21/10.1063/1.4962283
2016-09-21
2016-12-03

Abstract

Homogeneous nucleation from the vapor phase has been a well-defined area of research for ∼120 yr. In this paper, we present an overview of the key experimental and theoretical developments that have made it possible to address some of the fundamental questions first delineated and investigated in C. T. R. Wilson’s pioneering paper of 1897 [C. T. R. Wilson, Philos. Trans. R. Soc., A , 265–307 (1897)]. We review the principles behind the standard experimental techniques currently used to measure isothermal nucleation rates, and discuss the molecular level information that can be extracted from these measurements. We then highlight recent approaches that interrogate the vapor and intermediate clusters leading to particle formation, more directly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/21/1.4962283.html;jsessionid=p1xZewmZ8k3vPnlEzdyeBcP0.x-aip-live-02?itemId=/content/aip/journal/jcp/145/21/10.1063/1.4962283&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/21/10.1063/1.4962283&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/21/10.1063/1.4962283'
Right1,Right2,Right3,