Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/21/10.1063/1.4962355
1.
L. Ickes, A. Welti, C. Hoose, and U. Lohmann, Phys. Chem. Chem. Phys. 17, 5514 (2015).
http://dx.doi.org/10.1039/C4CP04184D
2.
G. de Boer, H. Morrison, M. D. Shupe, and R. Hildner, Geophys. Res. Lett. 38, L01803, doi:10.1029/2010gl046016 (2011).
http://dx.doi.org/10.1029/2010gl046016
3.
Y.-S. Choi, R. S. Lindzen, C.-H. Ho, and J. Kim, Proc. Natl. Acad. Sci. U. S. A. 107, 11211 (2010).
http://dx.doi.org/10.1073/pnas.1006241107
4.
C. D. Westbrook and A. J. Illingworth, Geophys. Res. Lett. 38, L14808, doi:10.1029/2011GL048021 (2011).
http://dx.doi.org/10.1029/2011GL048021
5.
D. Rosenfeld and W. L. Woodley, Nature 405, 440 (2000).
http://dx.doi.org/10.1038/35013030
6.
D. Rosenfeld, X. Yu, G. Liu, X. Xu, Y. Zhu, Z. Yue, J. Dai, Z. Dong, Y. Dong, and Y. Peng, Geophys. Res. Lett. 38, L21804, doi:10.1029/2011GL049423 (2011).
http://dx.doi.org/10.1029/2011GL049423
7.
H. Laksmono, T. A. McQueen, J. A. Sellberg, N. D. Loh, C. Huang, D. Schlesinger, R. G. Sierra, C. Y. Hampton, D. Nordlund, M. Beye, A. V. Martin, A. Barty, M. M. Seibert, M. Messerschmidt, G. J. Williams, S. Boutet, K. Amann-Winkel, T. Loerting, L. G. M. Pettersson, M. J. Bogan, and A. Nilsson, J. Phys. Chem. Lett. 6, 2826 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01164
8.
R. J. Herbert, B. J. Murray, S. J. Dobbie, and T. Koop, Geophys. Res. Lett. 42, 1599, doi:10.1002/2014GL062729 (2015).
http://dx.doi.org/10.1002/2014GL062729
9.
B. Kärcher and A. Seifert, Q. J. R. Meteorol. Soc. 142, 1320 (2016).
http://dx.doi.org/10.1002/qj.2735
10.
C. A. Angell, Annu. Rev. Phys. Chem. 34, 593 (1983).
http://dx.doi.org/10.1146/annurev.pc.34.100183.003113
11.
O. Mishima and H. E. Stanley, Nature 396, 329 (1998).
http://dx.doi.org/10.1038/24540
12.
P. G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/R01
13.
R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976).
http://dx.doi.org/10.1063/1.433153
14.
V. Holten and M. A. Anisimov, Sci. Rep. 2, 713 (2012).
http://dx.doi.org/10.1038/srep00713
15.
K. Ito, C. T. Moynihan, and C. A. Angell, Nature 398, 492 (1999).
http://dx.doi.org/10.1038/19042
16.
S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, and L. Xu, Chem. Rev. 116, 7608 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00609
17.
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
18.
O. Mishima, J. Chem. Phys. 133, 144503 (2010).
http://dx.doi.org/10.1063/1.3487999
19.
D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
20.
J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Nature 510, 385 (2014).
http://dx.doi.org/10.1038/nature13405
21.
J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinger, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub, D. P. DePonte, M. Beye, C. Chen, A. V. Martin, A. Barty, K. T. Wikfeldt, T. M. Weiss, C. Caronna, J. Feldkamp, L. B. Skinner, M. M. Seibert, M. Messerschmidt, G. J. Williams, S. Boutet, L. G. M. Pettersson, M. J. Bogan, and A. Nilsson, Nature 510, 381 (2014).
http://dx.doi.org/10.1038/nature13266
22.
E. B. Moore and V. Molinero, Nature 479, 506 (2011).
http://dx.doi.org/10.1038/nature10586
23.
A. Dehaoui, B. Issenmann, and F. Caupin, Proc. Natl. Acad. Sci. U. S. A. 112, 12020 (2015).
http://dx.doi.org/10.1073/pnas.1508996112
24.
S.-H. Chen, F. Mallamace, C.-Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, Proc. Natl. Acad. Sci. U. S. A. 103, 12974 (2006).
http://dx.doi.org/10.1073/pnas.0603253103
25.
W. S. Price, H. Ide, and Y. Arata, J. Phys. Chem. A 103, 448 (1999).
http://dx.doi.org/10.1021/jp9839044
26.
J. Mattsson, R. Bergman, P. Jacobsson, and L. Börjesson, Phys. Rev. B 79, 174205 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.174205
27.
B. Zobrist, T. Koop, B. P. Luo, C. Marcolli, and T. Peter, J. Phys. Chem. C 111, 2149 (2007).
http://dx.doi.org/10.1021/jp066080w
28.
H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, 2nd ed. (Kluwer Academic Publishers, 1997).
29.
D. M. Murphy and T. Koop, Q. J. R. Meteorol. Soc. 131, 1539 (2005).
http://dx.doi.org/10.1256/qj.04.94
30.
E. B. Moore and V. Molinero, Phys. Chem. Chem. Phys. 13, 20008 (2011).
http://dx.doi.org/10.1039/c1cp22022e
31.
J. C. Johnston and V. Molinero, J. Am. Chem. Soc. 134, 6650 (2012).
http://dx.doi.org/10.1021/ja210878c
32.
T. Li, D. Donadio, G. Russo, and G. Galli, Phys. Chem. Chem. Phys. 13, 19807 (2011).
http://dx.doi.org/10.1039/c1cp22167a
33.
T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, and C. G. Salzmann, Proc. Natl. Acad. Sci. U. S. A. 109, 1041 (2012).
http://dx.doi.org/10.1073/pnas.1113059109
34.
T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering, and T. F. Whale, Phys. Chem. Chem. Phys. 17, 60 (2015).
http://dx.doi.org/10.1039/C4CP02893G
35.
A. Haji-Akbari and P. G. Debenedetti, Proc. Natl. Acad. Sci. U. S. A. 112, 10582 (2015).
http://dx.doi.org/10.1073/pnas.1509267112
36.
J. E. Shilling, M. A. Tolbert, O. B. Toon, E. J. Jensen, B. J. Murray, and A. K. Bertram, Geophys. Res. Lett. 33, L17801, doi:10.1029/2006GL026671 (2006).
http://dx.doi.org/10.1029/2006GL026671
37.
K. T. Gillen, D. C. Douglass, and M. J. R. Hoch, J. Chem. Phys. 57, 5117 (1972).
http://dx.doi.org/10.1063/1.1678198
38.
F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H. D. Lüdemann, Phys. Rev. Lett. 59, 1128 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.1128
39.
F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H. D. Lüdemann, Ber. Bunsengesellschaft Phys. Chem. 92, 1111 (1988).
http://dx.doi.org/10.1002/bbpc.198800282
40.
H. Weingärtner, Z. Phys. Chem. 132, 129 (1982).
http://dx.doi.org/10.1524/zpch.1982.132.2.129
41.
M. Holz, S. R. Heil, and A. Sacco, Phys. Chem. Chem. Phys. 2, 4740 (2000).
http://dx.doi.org/10.1039/b005319h
42.
R. S. Smith and B. D. Kay, Nature 398, 788 (1999).
http://dx.doi.org/10.1038/18601
43.
C. A. Angell, Science 267, 1924 (1995).
http://dx.doi.org/10.1126/science.267.5206.1924
44.
P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
45.
R. J. Speedy, J. Phys. Chem. 91, 3354 (1987).
http://dx.doi.org/10.1021/j100296a049
46.
P. Gallo, D. Corradini, and M. Rovere, Nat. Commun. 5, 5806 (2014).
http://dx.doi.org/10.1038/ncomms6806
47.
L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. U. S. A. 102, 16558 (2005).
http://dx.doi.org/10.1073/pnas.0507870102
48.
D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
http://dx.doi.org/10.1063/1.1699435
49.
C. A. Jeffery and P. H. Austin, J. Geophys. Res. 102, 25269, doi:10.1029/97JD02243 (1997).
http://dx.doi.org/10.1029/97JD02243
50.
A. Reinhardt and J. P. K. Doye, J. Chem. Phys. 139, 096102 (2013).
http://dx.doi.org/10.1063/1.4819898
51.
Y. Cheng, H. Su, T. Koop, E. Mikhailov, and U. Pöschl, Nat. Commun. 6, 5923 (2015).
http://dx.doi.org/10.1038/ncomms6923
52.
D. T. Limmer and D. Chandler, J. Chem. Phys. 137, 044509 (2012).
http://dx.doi.org/10.1063/1.4737907
53.
J. E. McDonald, J. Meteorol. 10, 416 (1953).
http://dx.doi.org/10.1175/1520-0469(1953)010<0416:HNOSWD>2.0.CO;2
54.
G. P. Johari, G. Fleissner, A. Hallbrucker, and E. Mayer, J. Phys. Chem. 98, 4719 (1994).
http://dx.doi.org/10.1021/j100068a038
55.
V. Holten, D. T. Limmer, V. Molinero, and M. A. Anisimov, J. Chem. Phys. 138, 174501 (2013).
http://dx.doi.org/10.1063/1.4802992
56.
B. Riechers, F. Wittbracht, A. Hutten, and T. Koop, Phys. Chem. Chem. Phys. 15, 5873 (2013).
http://dx.doi.org/10.1039/c3cp42437e
57.
B. Kramer, O. Hubner, H. Vortisch, L. Woste, T. Leisner, M. Schwell, E. Ruhl, and H. Baumgartel, J. Chem. Phys. 111, 6521 (1999).
http://dx.doi.org/10.1063/1.479946
58.
D. Duft and T. Leisner, Atmos. Chem. Phys. 4, 1997 (2004).
http://dx.doi.org/10.5194/acp-4-1997-2004
59.
D. Rzesanke, J. Nadolny, D. Duft, R. Muller, A. Kiselev, and T. Leisner, Phys. Chem. Chem. Phys. 14, 9359 (2012).
http://dx.doi.org/10.1039/c2cp23653b
60.
S. Benz, K. Megahed, O. Mohler, H. Saathoff, R. Wagner, and U. Schurath, J. Photochem. Photobiol. A: Chem. 176, 208 (2005).
http://dx.doi.org/10.1016/j.jphotochem.2005.08.026
61.
P. Stöckel, I. M. Weidinger, H. Baumgartel, and T. Leisner, J. Phys. Chem. A 109, 2540 (2005).
http://dx.doi.org/10.1021/jp047665y
62.
P. Kabath, P. Stöckel, A. Lindinger, and H. Baumgärtel, J. Mol. Liq. 125, 204 (2006).
http://dx.doi.org/10.1016/j.molliq.2005.11.025
63.
C. A. Stan, G. F. Schneider, S. S. Shevkoplyas, M. Hashimoto, M. Ibanescu, B. J. Wiley, and G. M. Whitesides, Lab Chip 9, 2293 (2009).
http://dx.doi.org/10.1039/b906198c
64.
C. R. Hoyle, V. Pinti, A. Welti, B. Zobrist, C. Marcolli, B. Luo, Á Höskuldsson, H. B. Mattsson, O. Stetzer, T. Thorsteinsson, G. Larsen, and T. Peter, Atmos. Chem. Phys. 11, 9911 (2011).
http://dx.doi.org/10.5194/acp-11-9911-2011
65.
F. Lüönd, O. Stetzer, A. Welti, and U. Lohmann, J. Geophys. Res. 115, D14201, doi:10.1029/2009JD012959 (2010).
http://dx.doi.org/10.1029/2009JD012959
66.
L. Ladino, O. Stetzer, F. Lüönd, A. Welti, and U. Lohmann, J. Geophys. Res. 116, D22202, doi:10.1029/2011JD015727 (2011).
http://dx.doi.org/10.1029/2011JD015727
67.
D. A. Knopf, P. A. Alpert, B. Wang, and J. Y. Aller, Nat. Geosci. 4, 88 (2011).
http://dx.doi.org/10.1038/ngeo1037
68.
M. E. Earle, T. Kuhn, A. F. Khalizov, and J. J. Sloan, Atmos. Chem. Phys. 10, 7945 (2010).
http://dx.doi.org/10.5194/acp-10-7945-2010
69.
S. E. Wood, M. B. Baker, and B. D. Swanson, Rev. Sci. Instrum. 73, 3988 (2002).
http://dx.doi.org/10.1063/1.1511796
70.
A. Manka, H. Pathak, S. Tanimura, J. Wolk, R. Strey, and B. E. Wyslouzil, Phys. Chem. Chem. Phys. 14, 4505 (2012).
http://dx.doi.org/10.1039/c2cp23116f
71.
J. Huang and L. S. Bartell, J. Phys. Chem. 99, 3924 (1995).
http://dx.doi.org/10.1021/j100012a010
72.
B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, Phys. Chem. Chem. Phys. 12, 10380 (2010).
http://dx.doi.org/10.1039/c003297b
73.
D. J. Safarik and C. B. Mullins, J. Chem. Phys. 121, 6003 (2004).
http://dx.doi.org/10.1063/1.1779171
74.
P. Jenniskens and D. F. Blake, Astrophys. J. 473, 1104 (1996).
http://dx.doi.org/10.1086/178220
75.
T. Nemec, Chem. Phys. Lett. 583, 64 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.07.085
76.
E. Mayer and P. Bruggeller, Nature 298, 715 (1982).
http://dx.doi.org/10.1038/298715a0
77.
I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer, and T. Loerting, Phys. Chem. Chem. Phys. 7, 3210 (2005).
http://dx.doi.org/10.1039/b507651j
78.
A. Zaragoza, M. M. Conde, J. R. Espinosa, C. Valeriani, C. Vega, and E. Sanz, J. Chem. Phys. 143, 134504 (2015).
http://dx.doi.org/10.1063/1.4931987
79.
A. Hudait, S. Qiu, L. Lupi, and V. Molinero, Phys. Chem. Chem. Phys. 18, 9544 (2016).
http://dx.doi.org/10.1039/C6CP00915H
80.
J. Benet, L. G. MacDowell, and E. Sanz, Phys. Chem. Chem. Phys. 16, 22159 (2014).
http://dx.doi.org/10.1039/C4CP03398A
81.
S. C. Hardy, Philos. Mag. 35, 471 (1977).
http://dx.doi.org/10.1080/14786437708237066
82.
R. L. Davidchack, R. Handal, J. Anwar, and A. V. Brukhno, J. Chem. Theory Comput. 8, 2383 (2012).
http://dx.doi.org/10.1021/ct300193e
83.
J. R. Espinosa, C. Vega, and E. Sanz, J. Phys. Chem. C 120, 8068 (2016).
http://dx.doi.org/10.1021/acs.jpcc.5b11221
84.
J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 144, 034501 (2016).
http://dx.doi.org/10.1063/1.4939641
85.
E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013).
http://dx.doi.org/10.1021/ja4028814
86.
A. Bhabhe, H. Pathak, and B. E. Wyslouzil, J. Phys. Chem. A 117, 5472 (2013).
http://dx.doi.org/10.1021/jp400070v
87.
W. F. Kuhs, C. Sippel, A. Falenty, and T. C. Hansen, Proc. Natl. Acad. Sci. U. S. A. 109, 21259 (2012).
http://dx.doi.org/10.1073/pnas.1210331110
88.
H. R. Pruppacher, J. Atmos. Sci. 52, 1924 (1995).
http://dx.doi.org/10.1175/1520-0469(1995)052<1924:ANLAHI>2.0.CO;2
89.
B. J. Murray and E. J. Jensen, J. Atmos. Sol.-Terr. Phys. 72, 51 (2010).
http://dx.doi.org/10.1016/j.jastp.2009.10.007
90.
A. Nillson and H. Laksmono, personal communication (2016).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/21/10.1063/1.4962355
Loading
/content/aip/journal/jcp/145/21/10.1063/1.4962355
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/21/10.1063/1.4962355
2016-09-26
2016-12-10

Abstract

Liquid water can persist in a supercooled state to below 238 K in the Earth’s atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227–232 K on very short time scales using an X-ray laser technique. In summary, we present a new physically constrained parameterization for homogeneous ice nucleation which is consistent with the latest literature nucleation data and our physical understanding of the properties of supercooled water.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/21/1.4962355.html;jsessionid=YVV6cPpLtDFOxmgYg-QLz2IW.x-aip-live-02?itemId=/content/aip/journal/jcp/145/21/10.1063/1.4962355&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/21/10.1063/1.4962355&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/21/10.1063/1.4962355'
Right1,Right2,Right3,