Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. Ickes, A. Welti, C. Hoose, and U. Lohmann, Phys. Chem. Chem. Phys. 17, 5514 (2015).
G. de Boer, H. Morrison, M. D. Shupe, and R. Hildner, Geophys. Res. Lett. 38, L01803, doi:10.1029/2010gl046016 (2011).
Y.-S. Choi, R. S. Lindzen, C.-H. Ho, and J. Kim, Proc. Natl. Acad. Sci. U. S. A. 107, 11211 (2010).
C. D. Westbrook and A. J. Illingworth, Geophys. Res. Lett. 38, L14808, doi:10.1029/2011GL048021 (2011).
D. Rosenfeld and W. L. Woodley, Nature 405, 440 (2000).
D. Rosenfeld, X. Yu, G. Liu, X. Xu, Y. Zhu, Z. Yue, J. Dai, Z. Dong, Y. Dong, and Y. Peng, Geophys. Res. Lett. 38, L21804, doi:10.1029/2011GL049423 (2011).
H. Laksmono, T. A. McQueen, J. A. Sellberg, N. D. Loh, C. Huang, D. Schlesinger, R. G. Sierra, C. Y. Hampton, D. Nordlund, M. Beye, A. V. Martin, A. Barty, M. M. Seibert, M. Messerschmidt, G. J. Williams, S. Boutet, K. Amann-Winkel, T. Loerting, L. G. M. Pettersson, M. J. Bogan, and A. Nilsson, J. Phys. Chem. Lett. 6, 2826 (2015).
R. J. Herbert, B. J. Murray, S. J. Dobbie, and T. Koop, Geophys. Res. Lett. 42, 1599, doi:10.1002/2014GL062729 (2015).
B. Kärcher and A. Seifert, Q. J. R. Meteorol. Soc. 142, 1320 (2016).
C. A. Angell, Annu. Rev. Phys. Chem. 34, 593 (1983).
O. Mishima and H. E. Stanley, Nature 396, 329 (1998).
P. G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).
R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976).
V. Holten and M. A. Anisimov, Sci. Rep. 2, 713 (2012).
K. Ito, C. T. Moynihan, and C. A. Angell, Nature 398, 492 (1999).
S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, and L. Xu, Chem. Rev. 116, 7608 (2016).
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).
O. Mishima, J. Chem. Phys. 133, 144503 (2010).
D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Nature 510, 385 (2014).
J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinger, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub, D. P. DePonte, M. Beye, C. Chen, A. V. Martin, A. Barty, K. T. Wikfeldt, T. M. Weiss, C. Caronna, J. Feldkamp, L. B. Skinner, M. M. Seibert, M. Messerschmidt, G. J. Williams, S. Boutet, L. G. M. Pettersson, M. J. Bogan, and A. Nilsson, Nature 510, 381 (2014).
E. B. Moore and V. Molinero, Nature 479, 506 (2011).
A. Dehaoui, B. Issenmann, and F. Caupin, Proc. Natl. Acad. Sci. U. S. A. 112, 12020 (2015).
S.-H. Chen, F. Mallamace, C.-Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, Proc. Natl. Acad. Sci. U. S. A. 103, 12974 (2006).
W. S. Price, H. Ide, and Y. Arata, J. Phys. Chem. A 103, 448 (1999).
J. Mattsson, R. Bergman, P. Jacobsson, and L. Börjesson, Phys. Rev. B 79, 174205 (2009).
B. Zobrist, T. Koop, B. P. Luo, C. Marcolli, and T. Peter, J. Phys. Chem. C 111, 2149 (2007).
H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, 2nd ed. (Kluwer Academic Publishers, 1997).
D. M. Murphy and T. Koop, Q. J. R. Meteorol. Soc. 131, 1539 (2005).
E. B. Moore and V. Molinero, Phys. Chem. Chem. Phys. 13, 20008 (2011).
J. C. Johnston and V. Molinero, J. Am. Chem. Soc. 134, 6650 (2012).
T. Li, D. Donadio, G. Russo, and G. Galli, Phys. Chem. Chem. Phys. 13, 19807 (2011).
T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, and C. G. Salzmann, Proc. Natl. Acad. Sci. U. S. A. 109, 1041 (2012).
T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering, and T. F. Whale, Phys. Chem. Chem. Phys. 17, 60 (2015).
A. Haji-Akbari and P. G. Debenedetti, Proc. Natl. Acad. Sci. U. S. A. 112, 10582 (2015).
J. E. Shilling, M. A. Tolbert, O. B. Toon, E. J. Jensen, B. J. Murray, and A. K. Bertram, Geophys. Res. Lett. 33, L17801, doi:10.1029/2006GL026671 (2006).
K. T. Gillen, D. C. Douglass, and M. J. R. Hoch, J. Chem. Phys. 57, 5117 (1972).
F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H. D. Lüdemann, Phys. Rev. Lett. 59, 1128 (1987).
F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H. D. Lüdemann, Ber. Bunsengesellschaft Phys. Chem. 92, 1111 (1988).
H. Weingärtner, Z. Phys. Chem. 132, 129 (1982).
M. Holz, S. R. Heil, and A. Sacco, Phys. Chem. Chem. Phys. 2, 4740 (2000).
R. S. Smith and B. D. Kay, Nature 398, 788 (1999).
C. A. Angell, Science 267, 1924 (1995).
P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
R. J. Speedy, J. Phys. Chem. 91, 3354 (1987).
P. Gallo, D. Corradini, and M. Rovere, Nat. Commun. 5, 5806 (2014).
L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. U. S. A. 102, 16558 (2005).
D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
C. A. Jeffery and P. H. Austin, J. Geophys. Res. 102, 25269, doi:10.1029/97JD02243 (1997).
A. Reinhardt and J. P. K. Doye, J. Chem. Phys. 139, 096102 (2013).
Y. Cheng, H. Su, T. Koop, E. Mikhailov, and U. Pöschl, Nat. Commun. 6, 5923 (2015).
D. T. Limmer and D. Chandler, J. Chem. Phys. 137, 044509 (2012).
J. E. McDonald, J. Meteorol. 10, 416 (1953).<0416:HNOSWD>2.0.CO;2
G. P. Johari, G. Fleissner, A. Hallbrucker, and E. Mayer, J. Phys. Chem. 98, 4719 (1994).
V. Holten, D. T. Limmer, V. Molinero, and M. A. Anisimov, J. Chem. Phys. 138, 174501 (2013).
B. Riechers, F. Wittbracht, A. Hutten, and T. Koop, Phys. Chem. Chem. Phys. 15, 5873 (2013).
B. Kramer, O. Hubner, H. Vortisch, L. Woste, T. Leisner, M. Schwell, E. Ruhl, and H. Baumgartel, J. Chem. Phys. 111, 6521 (1999).
D. Duft and T. Leisner, Atmos. Chem. Phys. 4, 1997 (2004).
D. Rzesanke, J. Nadolny, D. Duft, R. Muller, A. Kiselev, and T. Leisner, Phys. Chem. Chem. Phys. 14, 9359 (2012).
S. Benz, K. Megahed, O. Mohler, H. Saathoff, R. Wagner, and U. Schurath, J. Photochem. Photobiol. A: Chem. 176, 208 (2005).
P. Stöckel, I. M. Weidinger, H. Baumgartel, and T. Leisner, J. Phys. Chem. A 109, 2540 (2005).
P. Kabath, P. Stöckel, A. Lindinger, and H. Baumgärtel, J. Mol. Liq. 125, 204 (2006).
C. A. Stan, G. F. Schneider, S. S. Shevkoplyas, M. Hashimoto, M. Ibanescu, B. J. Wiley, and G. M. Whitesides, Lab Chip 9, 2293 (2009).
C. R. Hoyle, V. Pinti, A. Welti, B. Zobrist, C. Marcolli, B. Luo, Á Höskuldsson, H. B. Mattsson, O. Stetzer, T. Thorsteinsson, G. Larsen, and T. Peter, Atmos. Chem. Phys. 11, 9911 (2011).
F. Lüönd, O. Stetzer, A. Welti, and U. Lohmann, J. Geophys. Res. 115, D14201, doi:10.1029/2009JD012959 (2010).
L. Ladino, O. Stetzer, F. Lüönd, A. Welti, and U. Lohmann, J. Geophys. Res. 116, D22202, doi:10.1029/2011JD015727 (2011).
D. A. Knopf, P. A. Alpert, B. Wang, and J. Y. Aller, Nat. Geosci. 4, 88 (2011).
M. E. Earle, T. Kuhn, A. F. Khalizov, and J. J. Sloan, Atmos. Chem. Phys. 10, 7945 (2010).
S. E. Wood, M. B. Baker, and B. D. Swanson, Rev. Sci. Instrum. 73, 3988 (2002).
A. Manka, H. Pathak, S. Tanimura, J. Wolk, R. Strey, and B. E. Wyslouzil, Phys. Chem. Chem. Phys. 14, 4505 (2012).
J. Huang and L. S. Bartell, J. Phys. Chem. 99, 3924 (1995).
B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, Phys. Chem. Chem. Phys. 12, 10380 (2010).
D. J. Safarik and C. B. Mullins, J. Chem. Phys. 121, 6003 (2004).
P. Jenniskens and D. F. Blake, Astrophys. J. 473, 1104 (1996).
T. Nemec, Chem. Phys. Lett. 583, 64 (2013).
E. Mayer and P. Bruggeller, Nature 298, 715 (1982).
I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer, and T. Loerting, Phys. Chem. Chem. Phys. 7, 3210 (2005).
A. Zaragoza, M. M. Conde, J. R. Espinosa, C. Valeriani, C. Vega, and E. Sanz, J. Chem. Phys. 143, 134504 (2015).
A. Hudait, S. Qiu, L. Lupi, and V. Molinero, Phys. Chem. Chem. Phys. 18, 9544 (2016).
J. Benet, L. G. MacDowell, and E. Sanz, Phys. Chem. Chem. Phys. 16, 22159 (2014).
S. C. Hardy, Philos. Mag. 35, 471 (1977).
R. L. Davidchack, R. Handal, J. Anwar, and A. V. Brukhno, J. Chem. Theory Comput. 8, 2383 (2012).
J. R. Espinosa, C. Vega, and E. Sanz, J. Phys. Chem. C 120, 8068 (2016).
J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 144, 034501 (2016).
E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013).
A. Bhabhe, H. Pathak, and B. E. Wyslouzil, J. Phys. Chem. A 117, 5472 (2013).
W. F. Kuhs, C. Sippel, A. Falenty, and T. C. Hansen, Proc. Natl. Acad. Sci. U. S. A. 109, 21259 (2012).
H. R. Pruppacher, J. Atmos. Sci. 52, 1924 (1995).<1924:ANLAHI>2.0.CO;2
B. J. Murray and E. J. Jensen, J. Atmos. Sol.-Terr. Phys. 72, 51 (2010).
A. Nillson and H. Laksmono, personal communication (2016).

Data & Media loading...


Article metrics loading...



Liquid water can persist in a supercooled state to below 238 K in the Earth’s atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227–232 K on very short time scales using an X-ray laser technique. In summary, we present a new physically constrained parameterization for homogeneous ice nucleation which is consistent with the latest literature nucleation data and our physical understanding of the properties of supercooled water.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd