Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
W. P. W. Thomas, Ionic Liquids in Synthesis (Wilet-VCH, Weinheim, 2008).
R. D. Rogers and K. R. Seddon, “Ionic liquids—Solvents of the future?,” Science 302, 792793 (2003).
N. V. Plechkova and K. R. Seddon, “Applications of ionic liquids in the chemical industry,” Chem. Soc. Rev. 37, 123150 (2008).
S. Zhang, J. Sun, X. Zhang, J. Xin, Q. Miao, and J. Wang, “Ionic liquid-based green processes for energy production,” Chem. Soc. Rev. 43, 78387869 (2014).
M. Ramdin, T. W. de Loos, and T. J. H. Vlugt, “State-of-the-art of CO2 capture with ionic liquids,” Ind. Eng. Chem. Res. 51, 81498177 (2012).
M. H. Chakrabarti, F. S. Mjalli, I. M. AiNashef, M. A. Hashim, M. A. Hussain, L. Bahadori, and C. T. J. Low, “Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries,” Renewable Sustainable Energy Rev. 30, 254270 (2014).
D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, and C. A. Angell, “Energy applications of ionic liquids,” Energy Environ. Sci. 7, 232250 (2014).
I. M. Warner, B. El-Zahab, and N. Siraj, “Perspectives on moving ionic liquid chemistry into the solid phase,” Anal. Chem. 86, 71847191 (2014).
A. Tesfai, B. El-Zahab, D. K. Bwambok, G. A. Baker, S. O. Fakayode, M. Lowry, and I. M. Warner, “Controllable formation of ionic liquid micro- and nanoparticles via a melt-emulsion-quench approach,” Nano Lett. 8, 897901 (2008).
A. Tesfai, B. El-Zahab, A. T. Kelley, M. Li, J. C. Garno, G. A. Baker, and I. M. Warner, “Magnetic and nonmagnetic nanoparticles from a group of uniform materials based on organic salts,” ACS Nano 3, 32443250 (2009).
M. Li, S. L. De Rooy, D. K. Bwambok, B. El-Zahab, J. F. DiTusa, and I. M. Warner, “Magnetic chiral ionic liquids derived from amino acids,” Chem. Commun. 2009, 69226924.
S. Das, D. Bwambok, B. El-Zahab, J. Monk, S. L. de Rooy, S. Challa, M. Li, F. R. Hung, G. A. Baker, and I. M. Warner, “Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanoGUMBOS,” Langmuir 26, 1286712876 (2010).
J. C. Dumke, B. El-Zahab, S. Challa, S. Das, L. Chandler, M. Tolocka, D. J. Hayes, and I. M. Warner, “Lanthanide-based luminescent nanoGUMBOS,” Langmuir 26, 1559915603 (2010).
S. L. De Rooy, M. Li, D. K. Bwambok, B. El-Zahab, S. Challa, and I. M. Warner, “Ephedrinium-based protic chiral ionic liquids for enantiomeric recognition,” Chirality 23, 5462 (2011).
J. C. Dumke, A. Oureshi, S. Hamden, B. El-Zaha, S. Das, D. J. Hayes, D. Boldor, K. Rupnik, and I. M. Warner, “Photothermal response of near-infrared-absorbing nanoGUMBOS,” Appl. Spectrosc. 68, 340352 (2014).
J. C. Dumke, A. Qureshi, S. Hamdan, K. Rupnik, B. El-Zahab, D. J. Hayes, and I. M. Warner, “In vitro activity studies of hyperthermal near-infrared nanoGUMBOS in MDA-MB-231 breast cancer cells,” Photochem. Photobiol. Sci. 13, 12701280 (2014).
A. Vioux, L. Viau, S. Volland, and J. Le Bideau, “Use of ionic liquids in sol-gel; ionogels and applications,” C. R. Chim. 13, 242255 (2010).
K. Lunstroot, K. Driesen, P. Nockemann, K. Van Hecke, L. Van Meervelt, C. Gorller-Walrand, K. Binnemans, S. Bellayer, L. Viau, J. Le Bideau, and A. Vioux, “Lanthanide-doped luminescent ionogels,” Dalton Trans. 2009, 298306.
K. Lunstroot, K. Driesen, P. Nockemann, C. Gorller-Walrand, K. Binnemans, S. Bellayer, J. Le Bideau, and A. Vioux, “Luminescent ionogels based on europium-doped ionic liquids confined within silica-derived networks,” Chem. Mater. 18, 57115715 (2006).
M.-A. Néouze, J. L. Bideau, P. Gaveau, S. Bellayer, and A. Vioux, “Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks,” Chem. Mater. 18, 39313936 (2006).
J. Le Bideau, L. Viau, and A. Vioux, “Ionogels, ionic liquid based hybrid materials,” Chem. Soc. Rev. 40, 907925 (2011).
P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, NJ, 1996).
D. Kaschiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000).
S. L. Price, “Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism,” Acc. Chem. Res. 42, 117126 (2008).
P. G. Vekilov, “Nucleation,” Cryst. Growth Des. 10, 50075019 (2010).
S. Auer and D. Frenkel, “Quantitative prediction of crystal-nucleation rates for spherical colloids: A computational approach,” Annu. Rev. Phys. Chem. 55, 333361 (2004).
J. Anwar and D. Zahn, “Uncovering molecular processes in crystal nucleation and growth by using molecular simulation,” Angew. Chem., Int. Ed. 50, 19962013 (2011).
J. C. Palmer and P. G. Debenedetti, “Recent advances in molecular simulation: A chemical engineering perspective,” AIChE J. 61, 370383 (2015).
A. Laaksonen, V. Talanquer, and D. W. Oxtoby, “Nucleation—Measurements, theory, and atmospheric applications,” Annu. Rev. Phys. Chem. 46, 489524 (1995).
S. L. Price, “Computational prediction of organic crystal structures and polymorphism,” Int. Rev. Phys. Chem. 27, 541568 (2008).
R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu, “Nucleation and growth of nanoparticles in the atmosphere,” Chem. Rev. 112, 19572011 (2012).
B. J. Murray, D. O’Sullivan, J. D. Atkinson, and M. E. Webb, “Ice nucleation by particles immersed in supercooled cloud droplets,” Chem. Soc. Rev. 41, 65196554 (2012).
R. P. Sear, “The non-classical nucleation of crystals: Microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate,” Int. Mater. Rev. 57, 328356 (2012).
T. Bartels-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutiérrez, J. Haapala, W. F. Kuhs, J. B. C. Pettersson, S. D. Price, C. I. Sainz-Díaz, D. J. Stokes, G. Strazzulla, E. S. Thomson, H. Trinks, and N. Uras-Aytemiz, “Ice structures, patterns, and processes: A view across the icefields,” Rev. Mod. Phys. 84, 885944 (2012).
T. Bartels-Rausch, “Chemistry: Ten things we need to know about ice and snow,” Nature 494, 2729 (2013).
C. Hoose and O. Möhler, “Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments,” Atmos. Chem. Phys. 12, 98179854 (2012).
L. A. Ladino Moreno, O. Stetzer, and U. Lohmann, “Contact freezing: A review of experimental studies,” Atmos. Chem. Phys. 13, 97459769 (2013).
L. Lupi, A. Hudait, and V. Molinero, “Heterogeneous nucleation of ice on carbon surfaces,” J. Am. Chem. Soc. 136, 31563164 (2014).
L. Lupi and V. Molinero, “Does hydrophilicity of carbon particles improve their ice nucleation ability?,” J. Phys. Chem. A 118, 73307337 (2014).
J. K. Singh and F. Müller-Plathe, “On the characterization of crystallization and ice adhesion on smooth and rough surfaces using molecular dynamics,” Appl. Phys. Lett. 104, 021603 (2014).
S. A. Zielke, A. K. Bertram, and G. N. Patey, “Simulations of ice nucleation by kaolinite (001) with rigid and flexible surfaces,” J. Phys. Chem. B 120, 17261734 (2016).
S. J. Cox, Z. Raza, S. M. Kathmann, B. Slater, and A. Michaelides, “The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals,” Faraday Discuss. 167, 389403 (2013).
G. Fraux and J. P. K. Doye, “Note: Heterogeneous ice nucleation on silver-iodide-like surfaces,” J. Chem. Phys. 141, 216101 (2014).
S. A. Zielke, A. K. Bertram, and G. N. Patey, “Simulations of ice nucleation by model AgI disks and plates,” J. Phys. Chem. B 120, 22912299 (2016).
J. Carrasco, B. Santra, J. Klimeš, and A. Michaelides, “To wet or not to wet? Dispersion forces tip the balance for water ice on metals,” Phys. Rev. Lett. 106, 026101 (2011).
X. X. Zhang, Y. J. , and M. Chen, “Crystallisation of ice in charged Pt nanochannel,” Mol. Phys. 111, 38083814 (2013).
S. J. Cox, S. M. Kathmann, B. Slater, and A. Michaelides, “Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity,” J. Chem. Phys. 142, 184704 (2015).
E. Pluhařová, L. Vrbka, and P. Jungwirth, “Effect of surface pollution on homogeneous ice nucleation: A molecular dynamics study,” J. Phys. Chem. C 114, 78317838 (2010).
A. Haji-Akbari, R. S. DeFever, S. Sarupria, and P. G. Debenedetti, “Suppression of sub-surface freezing in free-standing thin films of a coarse-grained model of water,” Phys. Chem. Chem. Phys. 16, 2591625927 (2014).
M. Fitzner, G. C. Sosso, S. J. Cox, and A. Michaelides, “The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity,” J. Am. Chem. Soc. 137, 1365813669 (2015).
A. Reinhardt and J. P. K. Doye, “Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model,” J. Chem. Phys. 141, 084501 (2014).
A. J. Bermúdez di Lorenzo, M. A. Carignano, and R. G. Pereyra, “A statistical study of heterogeneous nucleation of ice by molecular dynamics,” Chem. Phys. Lett. 635, 4549 (2015).
S. J. Cox, S. M. Kathmann, B. Slater, and A. Michaelides, “Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers,” J. Chem. Phys. 142, 184705 (2015).
A. Cacciuto, S. Auer, and D. Frenkel, “Onset of heterogeneous crystal nucleation in colloidal suspensions,” Nature 428, 404406 (2004).
K. Kratzer and A. Arnold, “Two-stage crystallization of charged colloids under low supersaturation conditions,” Soft Matter 11, 21742182 (2015).
S. Dorosz and T. Schilling, “On the influence of a patterned substrate on crystallization in suspensions of hard spheres,” J. Chem. Phys. 136, 044702 (2012).
T. D. Loeffler and B. Chen, “Surface induced nucleation of a Lennard-Jones system on an implicit surface at sub-freezing temperatures: A comparison with the classical nucleation theory,” J. Chem. Phys. 139, 234707 (2013).
S. Jungblut and C. Dellago, “Heterogeneous crystallization on tiny clusters,” Europhys. Lett. 96, 56006 (2011).
S. F. Hopp and A. Heuer, “Kinetic Monte Carlo study of nucleation processes on patterned surfaces,” J. Chem. Phys. 133, 204101 (2010).
E. D. Zanotto, J. E. Tsuchida, J. F. Schneider, and H. Eckert, “Thirty-year quest for structure–nucleation relationships in oxide glasses,” Int. Mater. Rev. 60, 376391 (2015).
Y. F. Li, H. Q. Yu, H. Li, K. M. Liew, and X. F. Liu, “Lamellar nanostructures of silicon heterogeneously solidified on graphite sheets,” Appl. Phys. Lett. 96, 163113 (2010).
S. Liu, H. Li, Y. He, X. Li, Y. Li, and X. Wang, “Pathway into the silicon nucleation on silicene substrate at nanoscale,” Mater. Des. 85, 6066 (2015).
H. Song and J. J. Hoyt, “A molecular dynamics study of heterogeneous nucleation at grain boundaries during solid-state phase transformations,” Comput. Mater. Sci. 117, 151163 (2016).
S. Liu, X. Zhou, W. Wu, X. Zhu, Y. Duan, H. Li, and X. Wang, “Molecular dynamics study on the nucleation of Al-Si melts on sheet substrates at the nanoscale,” Nanoscale 8, 45204528 (2016).
Y. Li, A. Goyal, A. Chernatynskiy, J. S. Jayashankar, M. C. Kautzky, S. B. Sinnott, and S. R. Phillpot, “Nanoindentation of gold and gold alloys by molecular dynamics simulation,” Mater. Sci. Eng.: A 651, 346357 (2016).
R. Mahjoub, W. Xu, B. Gun, K. J. Laws, L. T. Kong, J. F. Li, and M. Ferry, “Heterogeneous nucleation at inoculant particles in a glass forming alloy: An ab initio molecular dynamics investigation of interfacial properties and local chemical bonding,” Comput. Mater. Sci. 108, 94102 (2015).
X. Zhou, W. Wu, Y. He, Y. Li, L. Wang, and H. Li, “Theoretical study of the pathway to heterogeneous nucleation of liquid copper on the groove substrate with different wedge angles,” Phys. Chem. Chem. Phys. 17, 2065820666 (2015).
Y. He, H. Li, Y. Li, K. Zhang, Y. Jiang, and X. Bian, “Atomic insight into copper nanostructures nucleation on bending graphene,” Phys. Chem. Chem. Phys. 15, 91639169 (2013).
H. L. Zhang, Y. F. Han, Y. B. Dai, J. Wang, and B. D. Sun, “An ab initio molecular dynamics study: Liquid-Al/solid-TiB2 interfacial structure during heterogeneous nucleation,” J. Phys. D: Appl. Phys. 45, 455307 (2012).
X. He, Y. Shen, F. R. Hung, and E. E. Santiso, “Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt,” J. Chem. Phys. 143, 124506 (2015).
L. Maragliano, A. Fischer, E. Vanden-Eijnden, and G. Ciccotti, “String method in collective variables: Minimum free energy paths and isocommittor surfaces,” J. Chem. Phys. 125, 024106 (2006).
L. Maragliano, E. Vanden-Eijnden, and B. Roux, “Free energy and kinetics of conformational transitions from Voronoi tessellated milestoning with restraining potentials,” J. Chem. Theory Comput. 5, 25892594 (2009).
E. E. Santiso and B. L. Trout, “A general set of order parameters for molecular crystals,” J. Chem. Phys. 134, 064109 (2011).
E. E. Santiso and B. L. Trout, “A general method for molecular modeling of nucleation from the melt,” J. Chem. Phys. 143, 174109 (2015).
M. Shah, E. E. Santiso, and B. L. Trout, “Computer simulations of homogeneous nucleation of benzene from the melt,” J. Phys. Chem. B 115, 1040010412 (2011).
F. Giberti, M. Salvalaglio, M. Mazzotti, and M. Parrinello, “Insight into the nucleation of urea crystals from the melt,” Chem. Eng. Sci. 121, 5159 (2015).
A. Barducci, M. Bonomi, and M. Parrinello, “Metadynamics,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 826843 (2011).
J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, “Seeding approach to crystal nucleation,” J. Chem. Phys. 144, 034501 (2016).
A. J. Arduengo, H. V. R. Dias, R. L. Harlow, and M. Kline, “Electronic stabilization of nucleophilic carbenes,” J. Am. Chem. Soc. 114, 55305534 (1992).
F. H. Allen, “The Cambridge Structural Database: A quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 380388 (2002).
J. N. C. Lopes, J. Deschamps, and A. A. H. Pádua, “Modeling ionic liquids using a systematic all-atom force field,” J. Phys. Chem. B 108, 20382047 (2004).
J. N. Canongia Lopes and A. A. H. Pádua, “Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions,” J. Phys. Chem. B 110, 1958619592 (2006).
J. N. C. Lopes, A. A. H. Pádua, and K. Shimizu, “Molecular force field for ionic liquids IV: Trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions,” J. Phys. Chem. B 112, 50395046 (2008).
K. Shimizu, D. Almantariotis, M. F. C. Gomes, A. A. H. Pádua, and J. N. C. Lopes, “Molecular force field for ionic liquids V: Hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions,” J. Phys. Chem. B 114, 35923600 (2010).
J. N. Canongia Lopes and A. A. H. Pádua, “Molecular force field for ionic liquids composed of triflate or bistriflylimide anions,” J. Phys. Chem. B 108, 1689316898 (2004).
A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, and J. L. Williams, “Properties of 1,3-dialkylimidazolium chloride aluminum-chloride ionic liquids. 2. Phase-transitions, densities, electrical conductivities, and viscosities,” J. Phys. Chem. 88, 26142621 (1984).
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular dynamics with NAMD,” J. Comput. Chem. 26, 17811802 (2005).
W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graphics 14, 3338 (1996).
V. Ovchinnikov, M. Karplus, and E. Vanden-Eijnden, “Free energy of conformational transition paths in biomolecules: The string method and its application to myosin VI,” J. Chem. Phys. 134, 085103 (2011).
F. D. Rogers, An Introduction to NURBS with Historical Perspective (Morgan Kaufmann, San Francisco, 2001).
H. Alt and M. Godau, “Computing the Fréchet distance between two polygonal curves,” Int. J. Comput. Geom. Appl. 05, 7591 (1995).
H. Alt and M. Godau, “Measuring the resemblance of polygonal curves,” in Proceedings of the Eighth Annual Symposium on Computational Geometry (ACM, Berlin, Germany, 1992), pp. 102109.
E. Vanden-Eijnden and M. Venturoli, “Markovian milestoning with Voronoi tessellations,” J. Chem. Phys. 130, 194101 (2009).
E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, and R. Elber, “On the assumptions underlying milestoning,” J. Chem. Phys. 129, 174102 (2008).
See for Sage, an open source mathematics software system; accessed 05 September 2016.
C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, “Effects of confinement on freezing and melting,” J. Phys.: Condens. Matter 18, R15R68 (2006).
L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, “Phase separation in confined systems,” Rep. Prog. Phys. 62, 15731659 (1999).
K. Overloop and L. Vangerven, “Freezing phenomena in adsorbed water as studied by NMR,” J. Magn. Res. Ser. A 101, 179187 (1993).
R. Singh, J. Monk, and F. R. Hung, “Heterogeneity in the dynamics of the ionic liquid confined in a slit nanopore,” J. Phys. Chem. C 115, 1654416554 (2011).
N. N. Rajput, J. Monk, R. Singh, and F. R. Hung, “On the influence of pore size and pore loading on structural and dynamical heterogeneities of an ionic liquid confined in a slit nanopore,” J. Phys. Chem. C 116, 51695181 (2012).
H. R. A. Pruppacher, “New look at homogeneous ice nucleation in supercooled water drops,” J. Atmos. Sci. 52, 19241933 (1995).<1924:ANLAHI>2.0.CO2
P. Taborek, “Nucleation in emulsified supercooled water,” Phys. Rev. B 32, 59025906 (1985).
E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, “Homogeneous ice nucleation at moderate supercooling from molecular simulation,” J. Am. Chem. Soc. 135, 1500815017 (2013).
A. Haji-Akbari and P. G. Debenedetti, “Direct calculation of ice homogeneous nucleation rate for a molecular model of water,” Proc. Natl. Acad. Sci. U. S. A. 112, 1058210588 (2015).

Data & Media loading...


Article metrics loading...



Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim+][Cl] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of = 3 nm. By combining the string method in collective variables [Maragliano , J. Chem. Phys. , 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano , J. Chem. Theory Comput. , 2589–2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. , 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 1011 cm−3 s−1) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 1010 cm−3 s−1). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd