Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. M. Herlach, P. Galenko, and D. Holland-Moritz, in Metastable Solids from Undercooled Melts, edited byR. Cahn, Pergamon Materials Series (Elsevier, 2007).
D. M. Herlach, R. F. Cochrane, I. Egry, H.-J. Fecht, and A. L. Greer, “Containerless processing in the study of metallic melts and their solidification,” Int. Mater. Rev. 6, 273 (1993).
D. M. Herlach, “Containerless undercooling and solidification of pure metals,” Annu. Rev. Mater. Sci. 21, 23 (1991).
W.-K. Rhim, S. K. Chung, D. Barber, K. F. Man, G. Gutt, G. A. J. Rulison, and R. J. Spjut, “An electrostatic levitator for high-temperature containerless materials processing in 1-g,” Rev. Sci. Instrum. 64, 2961 (1993).
T. Meister, H. Werner, G. Lohoefer, D. M. Herlach, and H. Unbehauen, “Gain-scheduled control of an electrostatic levitator,” Control Eng. Pract. 11, 117 (2003).
C. Notthoff, H. Franz, M. Hanfland, D. M. Herlach, D. Holland-Moritz, and W. Petry, “Electromagnetic levitation apparatus for investigations of the phase selection in undercooled melts by energy-dispersive x-ray diffraction,” Rev. Sci. Instrum. 71, 3791 (2000).
O. Shuleshova, W. Löser, D. Holland-Moritz, D. M. Herlach, and J. Eckert, “Solidification and melting of high temperature materials: In situ observations by synchrotron radiation,” J. Mater. Sci. 47, 4497 (2012).
T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellisent, and D. M. Herlach, “Icosahedral short-range order in deeply undercooled metallic melts,” Phys. Rev. Lett. 89, 075507 (2002).
K. F. Kelton, G. W. Lee, A. K. Gangopadhyay, R. W. Hyers, T. Rathz, J. Rogers, M. B. Robinson, and D. Robinson, “First x-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier,” Phys. Rev. Lett. 90, 195504 (2003).
K. F. Kelton, A. L. Greer, D. M. Herlach, and D. Holland-Moritz, “The influence of order on the nucleation barrier,” MRS Bull. 29, 940 (2004).
C. Notthoff, B. Feuerbacher, H. Frans, D. M. Herlach, and D. Holland-Moritz, “Direct determination of metastable phase diagram by synchrotron radiation experiments on undercooled metallic melts,” Phys. Rev. Lett. 86, 1038 (2001).
Solidification of Containerless Undercooled Melts, edited by D. M. Herlach and D. M. Matson (Wiley-VCH, Weinheim, Germany, 2012).
K. F. Kelton and A. L. Greer, Nucleation, Pergamon Materials Series (Elsevier, 2009).
P. N. Pusey, “Liquids, freezing and glass transition,” in 51st Summer School in Theoretical Physics, Les Houches (F) 1989, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (Elsevier, Amsterdam, 1991), p. 763.
A. Sood, “Structural ordering in colloidal suspensions,” Solid State Phys. 45, 1 (1995).
W. van Megen, Transp. Theory Stat. Phys. 24, 10171051 (1995).
W. C. K. Poon, “Colloids as big atoms,” Science 304, 830 (2004).
V. J. Anderson and H. N. W. Lekkerkerker, “Insights into phase transition kinetics from colloid science,” Nature 416, 811 (2002).
U. Gasser, “Crystallization in three- and two-dimensional colloidal suspensions,” J. Phys.: Condens. Matter 21, 203101 (2009).
A. Engelbrecht, R. Meneses, and H. J. Schöpe, “Heterogeneous and homogeneous crystal nucleation in a colloidal model system of charged spheres at low metastabilities,” Soft Matter 7, 5685 (2011).
M. Franke, A. Lederer, and H. J. Schöpe, “Heterogeneous and homogeneous crystal nucleation in colloidal hard-sphere like microgels at low metastabilities,” Soft Matter 7, 11276 (2011).
R. P. Sear, “Nucleation: Theory and application to protein solutions and colloidal suspensions,” J. Phys.: Condens. Matter 19, 033101 (2007).
T. Palberg, P. Wette, and D. M. Herlach, “Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres,” Phys. Rev. E 93, 022601 (2016).
T. Palberg, “Crystallization kinetics of colloidal model suspensions: Recent achievements and new perspectives,” J. Phys.: Condens. Matter 26, 333101 (2014).
P. Wette, I. Klassen, D. Holland-Moritz, T. Palberg, S. V. Roth, and D. M. Herlach, “Colloids as model systems for liquid undercooled metals,” Phys. Rev. E 79, 010501(R) (2009).
D. M. Herlach, I. Klassen, P. Wette, and D. Holland-Moritz, “Colloids as model systems for metals and alloys: A case study of crystallization,” J. Phys.: Condens. Matter 22, 153101 (2010).
D. M. Herlach, “Colloids as model systems for metals and alloys: A case study of crystallization,” Eur. Phys. J.: Spec. Top. 223, 591 (2014).
T. Zykova-Timan, J. Horbach, and K. Binder, “Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures,” J. Chem. Phys. 133, 014705 (2010).
A. Yethiraj and A. v. Blaaderen, “A colloidal model system with an interaction tunable from hard sphere to soft and dipolar,” Nature 421, 513 (2003).
E. B. Sirota, H. D. Ou-Yang, S. K. Sinha, P. M. Chaikin, J. D. Axe, and Y. Fujii, “Complete phase diagram of a charged colloidal system: A synchro- tron x-ray scattering study,” Phys. Rev. Lett. 62, 1524 (1989).
L. K. Cotter and N. A. Clark, “Density fluctuation dynamics in a screened Coulomb colloid: Comparison of the liquid and bcc crystal phases,” J. Chem. Phys. 86, 6616 (1987).
P. Wette, I. Klassen, D. Holland-Moritz, D. M. Herlach, H. J. Schöpe, N. Lorenz, H. Reiber, T. Palberg, and S. V. Roth, “Communications: Complete description of re-entrant phase behavior in a charge variable colloidal model system,” J. Chem. Phys. 132, 131102 (2010).
P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340 (1986).
D. A. Kofke and P. G. Bolhuis, “Freezing of polydisperse hard spheres,” Phys. Rev. E 59, 618621 (1999).
M. Fasolo and P. Sollich, “Fractionation effects in phase equilibria of polydisperse hard-sphere colloids,” Phys. Rev. E 70, 041410 (2004).
M. Dijkstra, R. van Roij, and R. Evans, “Phase diagram of highly asymmetric binary hard-sphere mixtures,” Phys. Rev. E 59, 57445770 (1999).
M. D. Eldridge, P. A. Madden, P. N. Pusey, and P. Bartlett, “Binary hard sphere mixture, a comparison between computer simulation and experiment,” Mol. Phys. 84, 395 (1995).
A. Meller and J. Stavans, “Glass transition and phase diagramm of strongly interacting binary colloidal mixtures,” Phys. Rev. Lett. 68, 36463649 (1992).
N. Lorenz, H. J. Schöpe, H. Reiber, T. Palberg, P. Wette, I. Klassen, D. M. Herlach, and T. Okubo, “Phase behaviour of deionized binary mixtures of charged colloidal spheres,” J. Phys.: Condens. Matter 21, 464116 (2009).
E. V. Shevchenko, D. V. Talapin, S. O’Brien, and C. B. Murray, “Polymorphism in AB13 nanoparticle superlattices: An example of semiconductor-metal metamaterials,” J. Am. Chem. Soc. 127, 8741 (2005).
B. Cabane, J. Li, F. Artzner, R. Botet, C. Labbez, G. Bareigts, M. Sztucki, and L. Goehring, “Hiding in plain view: Colloidal self-assembly from polydisperse populations,” Phys. Rev. Lett. 116, 208001 (2016).
M. E. Leunissen, C. G. Christova1, A.-P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof, M. Dijkstra, R. van Roij, and A. van Blaaderen, “Ionic colloidal crystals of oppositely charged particles,” Nature 437, 235 (2005).
A. Yethiraj, “Tunable colloids: Control of colloidal phase transitions with tunable interactions,” Soft Matter 3, 1099 (2007).
R. Simon, T. Palberg, and P. Leiderer, “Structurally determined Brownian dynamics of ordered colloidal suspensions,” J. Chem. Phys. 99, 3030 (1993).
S. R. Coriell and D. Turnbull, “Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts,” Acta Metall. 30, 2135 (1982).
R. Willnecker, D. M. Herlach, and B. Feuerbacher, “Evidence of non-equilibrium processes in rapid solidification of undercooled melts,” Phys. Rev. Lett. 62, 2707 (1989).
K. Eckler, R. F. Cochrane, D. M. Herlach, B. Feuerbacher, and M. Jurisch, “Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys,” Phys. Rev. B 45, 5019 (1992).
H. Hartmann, D. Holland-Moritz, P. Galenko, and D. M. Herlach, “Evidence of the transition from ordered to disordered growth during rapid solidification of an intermetallic phase,” Europhys. Lett. 87, 40007 (2009).
D. J. W. Aastuen, N. A. Clark, L. K. Cotter, and B. J. Ackerson, “Nucleation and growth of colloidal crystals,” Phys. Rev. Lett. 57, 1733 (1986).
T. Palberg, “Crystallization kinetics of repulsive colloidal spheres,” J. Phys.: Condens. Matter 11, R323 (1999).
A. Stipp, T. Palberg, and E. Bartsch, “Unusual crystallization kinetics in a hard sphere colloid-polymer mixture,” Phys. Rev. Lett. 102, 038302 (2009).
J. Nozawa, S. Uda, Y. Naradate, H. Koizumi, K. Fujiwara, A. Toyotama, and J. Yamanaka, “Impurity partitioning during colloidal crystallization,” J. Phys. Chem. B 117, 52895295 (2013).
U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 8 (2001).
C. P. Royall, S. R. Williams, T. Ohtsuka, and H. Tanaka, “Direct observation of a local structural mechanism for dynamic arrest,” Nat. Mater. 7, 556 (2008).
P. Tan, N. Xu, and L. Xu, “Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization,” Nat. Phys. 10, 73 (2014).
A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129, 3044 (2007).
A. Murakado, A. Toyotama, M. Yamamoto, R. Nagano, T. Okuzono, and J. Yamanaka, “Thermoreversible crystallization of charged colloids due to adsorption/desorption of ionic surfactants,” J. Colloid Interface Sci. 465, 200 (2015).
T. Palberg, W. Härtl, U. Wittig, H. Versmold, M. Würth, and E. Simnacher, “Continuous deionization of latex suspensions,” J. Phys. Chem. 96, 8180 (1992).
P. Wette, “Eigenschaftskorrelationen in kolloidalen festkörpern und fluiden aus optischen experimenten,” Ph.D. thesis, University Mainz, 2006.
U. Gasser, A. Schofield, and D. A. Weitz, “Local order in a supercooled colloidal fluid observed by confocal microscopy,” J. Phys.: Condens. Matter 15, S375 (2003).
L. A. Fernandez, V. Martin-Mayor, B. Seoane, and P. Verrocchio, “Equilibrium fluid-solid coexistence of hard spheres,” Phys. Rev. Lett. 108, 165701 (2012).
C. P. Royall, W. C. K. Poon, and E. R. Weeks, “In search of colloidal hard spheres,” Soft Matter 9, 17 (2013).
F. C. Frank, “Supercooling of liquids,” Proc. R. Soc. A 215, 43 (1952).
D. Turnbull, “Kinetics of solidification of supercooled liquid mercury droplets,” J. Chem. Phys. 20, 411 (1952).
F. Spaepen, “A structural model for the solid-liquid interface in monatomic systems,” Acta Metall. 23, 729 (1975).
S. Auer and D. Frenkel, “Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy,” Nature (London) 413, 711 (2001).
H. J. Schöpe, G. Bryant, and W. van Megen, “Small changes in particle-size distribution dramatically delay and enhance nucleation in hard sphere colloidal suspension,” Phys. Rev. E 74, 060401 (2006).
H. A. Wilson, “On the velocity of solidification and viscosity of supercooled liquids,” Philos. Mag. 50, 238 (1900).
J. Frenkel, “Note on a relation between the speed of crystallization and viscosity,” Phys. Z. Sowjetunion 1, 498 (1932).
D. Li and D. M. Herlach, “Direct measurements of free crystal growth in deeply undercooled melts of semiconducting materials,” Phys. Rev. Lett. 77, 1801 (1996).
M. Würth, J. Schwarz, F. Culis, P. Leiderer, and T. Palberg, “Growth kinetics of body centered cubic colloidal crystals,” Phys. Rev. E 52, 6415 (1995).
P. Wette and H. J. Schöpe, “Nucleation kinetics in deionized charged colloidal model systems: A quantitative study by means of classical nucleation theory,” Phys. Rev. E 75, 051405 (2007).
T. Zykova-Timan, R. E. Rozas, J. Horbach, and K. Binder, “Computer simulation studies of finite-size broadening of solid-liquid interfaces: From hard spheres to nickel,” J. Phys.: Condens. Matter 21, 464102 (2009).
M. S. Ripoll, C. F. Tejero, and M. Baus, “A theoretical estimate of the Wilson-Frenkel kinetics of colloidal crystal growth in charge-stabilized dispersions,” Physica A 234, 311 (1996).
D. Turnbull, “Thermodynamic driving force for nucleation and growth,” J. Appl. Phys. 21, 1022 (1950).
P. R. Rony, “The electromagnetic levitation of metals,” Technical Report UCRL-11411 (Lawrence Radiation Laboratory, University of California, Berkeley, USA,1964).
J. Piller, R. Knauf, P. Preu, G. Lohöfer, and D. M. Herlach, “Containerless positioning and inductive heating under micro-g conditions,” in Proceedings 6th European Symposium on Materials Sciences under Microgravity, ESA SP-256 (European Space Agency, 1986), p. 437.
G. Lohöfer, “TEMPUS space station vorentwicklung, SUPOS spulenentwicklung,” German patent 38, 36239 (1991);
DLR Internal Report 333, 2001, p. 76.
S. Earnshaw, “On the nature of the molecular forces which regulate the constitution of the luminiferous ether,” Trans. Cambridge Philos. Soc. 7, 97 (1842).
A. J. Rulison, J. L. Watkins, and B. Zambrano, “Electrostatic containerless processing system,” Rev. Sci. Instrum. 68, 2856 (1997).
T. Meister, “Aufbau und regelung eines elektrostatischen positionierers,” Ph.D. thesis,Ruhr-University Bochum, 2000.
N. Felici, “Forces et charges de petits objects en contact avec une electrode affecttée d’un champ électrique,” Rev. Electr. 75, 1160 (1966).
T. Kordel, D. Holland-Moritz, F. Yang, J. Peters, T. Unruh, T. Hansen, and A. Meyer, “Neutron scattering experiments on liquid droplets using electrostatic levitation,” Phys. Rev. B 83, 104205 (2011).
P. Wette, H.-J. Schöpe, R. Biehl, and T. Palberg, “Conductivity of deionized two-component colloidal suspensions,” J. Chem. Phys. 114, 7556 (2001).
W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62 (1968).
J. Yamanaka, H. Yoshida, T. Koga, N. Ise, and T. Hashimoto, “Reentrant solid-liquid transition in ionic colloidal dispersions by varying particle charge density,” Phys. Rev. Lett. 80, 5806 (1998).
J. Yamanaka, Y. Hayashi, N. Ise, and T. Yamaguchi, “Control of the surface charge density of colloidal silica by sodium hydroxide in salt-free and low-salt dispersions,” Phys. Rev. E 55, 3028 (1997).
F. J. M. Ruiz-Cabello, G. Trefalt, P. Maroni, and M. Borkovec, “Electric double-layer potentials and surface regulation properties measured by colloidal-probe atomic force microscopy,” Phys. Rev. E. 90, 012301 (2014).
M. Brunner, J. Dobnikar, H. H. v. Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
T. Kreer, J. Horbach, and A. Chatterji, “Nonlinear effects in charge stabilized colloidal suspensions,” Phys. Rev. E 74, 021401 (2006).
S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, and D. Hone, “Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory,” J. Chem. Phys. 80, 5776 (1984).
E. Trizac, L. Bocquet, M. Aubouy, and H. H. von Grünberg, “Pair structure of the hard-sphere Yukawa fluid: An improved analytic method versus simulations, Rogers-Young scheme, and experiment,” Langmuir 19, 4027 (2003).
N. Garbow, M. Evers, T. Palberg, and T. Okubo, “On the electrophoretic mobility of isolated colloidal spheres,” J. Phys.: Condens. Matter 16, 3835 (2004).
F. Strubbe, F. Beunis, and K. Neyts, “Determination of the effective charge of individual colloidal particles,” J. Colloid Interface Sci. 301, 302 (2006).
S. Bucci, C. Fagotti, V. Degiorgio, and R. Piazza, “Small-angle neutron-scattering study of ionic-nonionic mixed micelles,” Langmuir 7, 824 (1991).
A. Delgado, F. González-Caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema, “Measurement and interpretation of electrokinetic phenomena,” J. Colloid Interface Sci. 309, 194 (2007).
H. Reiber, T. Köller, T. Palberg, F. Carrique, E. Ruiz-Reina, and R. Piazza, “Salt concentration and particle density dependence of electrophoretic mobilities of spherical colloids in aqueous suspension,” J. Colloid Interface Sci. 309, 315 (2007).
V. Lobashkin, B. Dünweg, C. Holm, M. Medebach, and T. Palberg, “Electrophoresis of colloidal dispersions in the low-salt regime,” Phys. Rev. Lett. 98, 176105 (2007).
D. Hessinger, M. Evers, and T. Palberg, “Independent ion migration in suspensions of strongly interacting charged colloidal spheres,” Phys. Rev. E 61, 5493 (2000).
M. Medebach, R. Chuliá Jordán, H. Reiber, H.-J. Schöpe, R. Biehl, M. Evers, D. Hessinger, J. Olah, T. Palberg, E. Schönberger, and P. Wette, “Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence,” J. Chem. Phys. 123, 104903 (2005).
L. Shapran, M. Medebach, P. Wette, H. J. Schöpe, T. Palberg, J. Horbach, T. Kreer, and A. Chaterji, “Qualitative characterisation of effective interactions of charged spheres on different levels of organisation using Alexander’s renormalised charge as reference,” Colloids Surf. A 270, 220 (2005).
R. Klein, H. H. v. Grünberg, C. Bechinger, M. Brunner, and V. Lobashkin, “Macroion shielding and state dependent pair potentials in colloidal suspensions,” J. Phys.: Condens. Matter 14, 7631 (2002).
C. Russ, H. H. von Grünberg, M. Dijkstra, and R. van Roij, “Three-body forces between charged colloidal particles,” Phys. Rev. E 66, 011402 (2002).
C. Russ, M. Brunner, C. Bechinger, and H. H. von Grünberg, “Three-body forces at work: Three-body potentials derived from triplet correlations in colloidal suspensions,” Europhys. Lett. 69, 468 (2005).
D. Reinke, H. Stark, H.-H. von Grünberg, A. B. Schofield, G. Maret, and U. Gasser, “Noncentral forces in crystals of charged colloids,” Phys. Rev. Lett. 98, 038301 (2007).
E. R. Russell, F. Spaepen, and D. A. Weitz, Phys. Rev. E 91, 032310 (2015).
L. Shapran, H. J. Schöpe, and T. Palberg, “Effective charges along the melting line of colloidal crystals,” J. Chem. Phys. 125, 194714 (2006).
K. Vondermassen, J. Bongers, A. Mueller, and H. Versmold, “Brownian motion: A tool to determine the pair potential between colloid particles,” Langmuir 10, 1351 (1994).
V. Reus, L. Belloni, T. Zemb, N. Lutterbach, and H. Versmold, “Equation of state and structure of electrostatic colloidal crystals: Osmotic pressure and scattering study,” J. Phys. II France 7, 603 (1997).
M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele, “Pair structure of the hard-sphere Yukawa fluid: An improved analytic method versus simulations, Rogers-Young scheme, and experiment,” J. Chem. Phys. 134, 044532 (2011);
Erratum, M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele, J. Chem. Phys. 134, 129901 (2011).
T. Palberg, J. Kottal, F. Bitzer, R. Simon, M. Würth, and P. Leiderer, “Shear modulus titration in crystalline colloidal suspensions,” J. Colloid Interface Sci. 169, 85 (1995).
P. Wette, H. J. Schöpe, and T. Palberg, “Comparison of colloidal effective charges from different experiments,” J. Chem. Phys. 116, 10981 (2002).
M. O. Robbins, K. Kremer, and G. S. Grest, “Phase diagram and dynamics of Yukawa systems,” J. Chem. Phys. 88, 3286 (1988).
S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, “Triple point of Yukawa systems,” Phys. Rev. E 56, 4671 (1997).
N. Lorenz and T. Palberg, “Melting and freezing lines for a mixture of charged colloidal spheres with spindle type phase diagram,” J. Chem. Phys. 133, 104501 (2010).
H. J. Schöpe and T. Palberg, “A multipurpose instrument to measure the vitreous properties of charged colloidal solids,” J. Colloid Interface Sci. 234, 149 (2001).
P. Wette, A. Engelbrecht, R. Salh, I. Klassen, D. Menke, D. M. Herlach, S. V. Roth, and H. J. Schöpe, “Competition between heterogeneous and homogeneous nucleation near a flat wall,” J. Phys.: Condens. Matter 21, 464115 (2009).
I. Klassen, “Charged colloids as model systems for metals,” Ph.D. thesis, Ruhr-University Bochum, 2009.
F. Stieber and W. Richtering, “Fiber-optic-dynamic-light-scattering and two-color-cross-correlation studies of turbid, concentrated, sterically stabilized polystyrene latex,” Langmuir 11, 4724 (1995).
W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, “Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition,” Phys. Rev. E 58, 6073 (1998).
C. Sinn, R. Niehüser, E. Overbeck, and T. Palberg, “Dynamic light scattering from preserved skimmed cow milk: A comparison of two-color and three-dimensional cross-correlation experiments,” Prog. Colloid Polym. Sci. 110, 8 (1998).
C. Sinn, R. Niehüser, E. Overbeck, and T. Palberg, “Particle characterization using multiple scattering decorrelation methods, I: Standard latex particles,” Part. Part. Syst. Charact. 16, 95 (1999).<95::AID-PPSC95>3.0.CO2-4
S. V. Roth, R. Döhrmann, M. Dommach, M. Kuhlmann, I. Kröger, R. Gehrke, H. Walter, C. Schroer, B. Lengeler, and P. Müller-Buschbaum, “Small angle options of the upgraded ultrasmall-angle x-ray scattering beam-line BW4 at HASYLAB,” Rev. Sci. Instrum. 77, 085106 (2006).
H.-J. Schöpe, T. Decker, and T. Palberg, “Response of the elastic properties of colloidal crystals to phase transitions and morphological changes,” J. Chem. Phys. 109, 10068 (1998).
D. Holland-Moritz, T. Schenk, R. Bellissent, V. Simonet, K. Funakoshi, J. M. Merino, T. Buslaps, and S. Reutzel, “Short-range order in undercooled Co melts,” J. Non-Cryst. Solids 312-314, 47 (2002).
S. Sachdev and D. R. Nelson, “Theory of the structure factor of metallic glasses,” Phys. Rev. Lett. 53, 1947 (1984).
V. Simonet, F. Hippert, H. Klein, M. Audier, R. Bellissent, H. Fischer, A. P. Murani, and D. Boursier, “Local order and magnetism in liquid Al-Pd-Mn alloys,” Phys. Rev. B 58, 6273 (1998).
D. Holland-Moritz, D. M. Herlach, and K. Urban, “Observation of the undercool-ability of quasicrystal-forming alloys by electro-magnetic levitation,” Phys. Rev. Lett. 71, 1196 (1993).
T. Schenk, V. Simonet, D. Holland-Moritz, R. Bellissent, T. Hansen, P. Convert, and D. M. Herlach, “Temperature dependence of the chemical short-range order in undercooled and stable Al-Fe-Co liquids,” Europhys. Lett. 65, 34 (2004).
T. Palberg, E. Bartsch, R. Beyer, M. Hofmann, N. Lorenz, J. Marquis, R. Niu, and T. Okubo, “To make a glass—Avoid the crystal,” J. Stat. Phys. 2016, 074007.
H. Tanaka, “Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers,” J. Phys.: Condens. Matter 15, L491 (2003).
U. Köster, J. Meinhardt, S. Roos, and H. Liebertz, “Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys,” Appl. Phys. Lett. 69, 179 (1996).
L. Q. Xing, J. Eckert, W. Löser, and L. Schultz, “High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys,” Appl. Phys. Lett. 74, 664 (1999).
N. A. Mauro, V. Wessels, J. C. Bendert, S. Klein, A. K. Gangopadhyay, M. J. Kramer, S. G. Hao, G. E. Rustan, A. Kreyssig, A. I. Goldman, and K. F. Kelton, Phys. Rev. B. 83, 184109 (2011).
S. Klein, D. Holland-Moritz, D. M. Herlach, N. A. Mauro, and K. F. Kelton, “Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments,” EPL 102, 36001 (2013).
S. G. Hao, C. Z. Wang, M. J. Kramer, and K. M. Ho, “Microscopic origin of slow dynamics at the good glass forming composition range in Zr1−x Cux metallic liquids,” J. Appl. Phys. 107, 053511 (2010).
L. Huang, C. Z. Wang, and K. M. Ho, “Structure and dynamics of liquid Ni36 Zr64 by ab initio molecular dynamics,” Phys. Rev. B 83, 184103 (2011).
D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, and A. Meyer, “Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering,” Phys. Rev. B 79, 064204 (2009).
D. R. Nelson and F. Spaepen, “Polytetrahedral order in condensed matter,” Solid State Phys 42, 1 (1989).
B. S. Murty, D. H. Ping, and K. Ono, “Nanoquasicrystallization of binary Zr–Pd metallic glasses,” Appl. Phys. Lett. 77, 1102 (2000).
W. Löser, A. Garcia-Escorial, and B. Vinet, “Metastable phase formation in electromagnetic levitation, drop-tube and gas-atomization techniques: A comparative study,” Int. J. Non-Equilib. Process. 11, 89 (1998).
V. P. Skripov, “Homogeneous nucleation in melts and amorphous films,” Curr. Top. Mater. Sci. 2, 327 (1977).
S. Klein, D. Holland-Moritz, and D. M. Herlach, “Crystal nucleation in undercooled liquid zirconium,” Phys. Rev. B 80, 212202 (2009).
D. Turnbull, “Under what conditions can a glass be formed?,” Contemp. Phys. 10, 473 (1969).
J. A. Dantzig and M. Rappaz, Solidification (EPFL Press, Lausanne, Switzerland, 2009).
W. Hofmeister, C. M. Morton, R. Bayuzick, and M. R. Robinson, Solidification 1999: Proceedings of TMS Annual Meeting San Diego, California, edited by W. H. Hofmeister, J. R. Rogers, N. B. Singh, S. P. March, and P. W. Vorhees (The Minerals, Metals and Materials Society, TMS, 1999), p. 75.
S. Klein and D. M. Herlach, “Crystal nucleation in undercooled melts of PdZr2,” J. Appl. Phys. 389, 183510 (2013).
R. Kobold, “Crystal growth in undercooed melts of glass forming Zr-based alloys,” Ph.D. thesis,Ruhr-University Bochum, 2016.
S. Klein, “Nucleation in undercooled melts of pure zirconium and zirconium-based alloys,” Ph.D. thesis, Ruhr-University Bochum, 2010.
D. Holland-Moritz, “Ordnungsphänomene, fest-flüssig grenzfläche und Phasenselektionsverhalten in unterkühlten metallscgmelzen,” Habilitation thesis, Ruhr-University Bochum, 2003.
R. Willnecker, D. M. Herlach, and B. Feuerbacher, “Containeress undercooling of bulk Fe-Ni melts,” Appl. Phys. Lett. 49, 1339 (1986).
D. Holland-Moritz, “Short-range order and solid-liquid interfaces in undercooled melts,” Int. J. Non-Equilib. Process. 11, 169 (1998).
D. W. Marr and A. P. Gast, “On the solid–fluid interface of adhesive spheres,” J. Chem. Phys. 99, 2014 (1993).
D. Y. Sun, M. Asta, and J. J. Hoyt, “Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe,” Phys. Rev. B 69, 174103 (2004).
B. J. Ackerson and N. A. Clark, “Sheared colloidal suspensions,” Physica A 118, 221 (1983).
T. Schenk, “Neutronenstreuexperimente an unterkühlten schmelzen,” Ph.D. thesis, Ruhr-University Bochum, 2002.
G. Nägele, “On the dynamics and structure of charge-stabilized suspensions,” Phys. Rep. 272, 215 (1996).
J. P. K. Doye, D. J. Wales, and R. S. Berry, “The effect of the range of the potential on the structures of clusters,” J. Chem. Phys. 103, 4234 (1995).
J. D. Weeks, D. Chandler, and H. C. Andersen, “Role of repulsive forces in determining the equilibrium structure of simple liquids,” J. Chem. Phys. 54, 5237 (1971).
T. Palberg, M. R. Maaroufi, A. Stipp, and H. J. Schöpe, “Micro-structure evolution of wall based crystals after casting of model suspensions as obtained from Bragg microscopy,” J. Chem. Phys. 137, 094906 (2012).
Y. Monovoukas and A. P. Gast, “A study of colloidal crystal morphology and orientation via polarizing microscopy,” Langmuir 7, 460 (1991).
P. Wette, H. J. Schöpe, and T. Palberg, “Crystallization in charged two component suspensions,” J. Chem. Phys. 123, 174902 (2005).
J. Liu, H. J. Schöpe, and T. Palberg, “Correlations between morphology, phase behavior and pair interaction in soft sphere solids,” J. Chem. Phys. 116, 5901 (2001);
Erratum, J. Liu, H. J. Schöpe, and T. Palberg, 123, 169901 (2005).
P. Schall, I. Cohen, D. A. Weitz, and F. Spaepen, “Visualizing dislocation nucleation by indenting colloidal crystals,” Nature 440, 319 (2006).
T. Schilling, H. J. Schöpe, M. Oettel, G. Opletal, and I. Snook, “Precursor-mediated crystallization process in suspensions of hard spheres,” Phys. Rev. Lett. 105, 025701 (2010).
K. Kratzer and A. Arnold, “Two-stage crystallization of charged colloids under low supersaturation conditions,” Soft Matter 11, 2174 (2015).
J. Bokeloh, R. E. Rozas, J. Horbach, and G. Wilde, “Nucleation barriers for the liquid-to-crystal transition in Ni: Experiment and simulation,” Phys. Rev. Lett. 107, 145701 (2011).
Y. He, B. Olivier, and B. J. Ackerson, “Morphology of crystals made of hard spheres,” Langmuir 13, 1408 (1997).
A. P. Gast and Y. Monovoukas, “A new growth instability in colloidal crystallization,” Nature 351, 552 (1991).
T. Palberg, W. Mönch, J. Schwarz, and P. Leiderer, “Grain size control in polycrystalline colloidal solids,” J. Chem. Phys. 102, 5082 (1995).
A. Heymann, A. Stipp, C. Sinn, and T. Palberg, “Observation of oriented close packed lattice planes in polycrystalline hard-sphere solids,” J. Colloid Interface Sci. 207, 119 (1998).
A. Stipp, R. Biehl, Th. Preis, J. Liu, A. Barreira Fontecha, H. J. Schöpe, and T. Palberg, “Heterogeneous nucleation of colloidal melts under the influence of shearing fields,” J. Phys.: Condens. Matter 16, S3885S3902 (2004).
P. Wette, H. J. Schöpe, J. Liu, and T. Palberg, “Solidification in model systems of spherical particles with density-dependent interactions,” Europhys. Lett. 64, 124 (2003).
J. L. Harland and W. van Megen, “Crystallization kinetics of suspensions of hard colloidal spheres,” Phys. Rev. E 55, 3054 (1997).
J. L. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr. 11, 102 (1978).
K. M. Dobrich, C. Rau, and C. E. Krill, “Quantitative characterization of the three-dimensional microstructure of polycrystalline Al-Sn using X-ray microtomography,” Metall. Mater. Trans. A 35, 1953 (2004).
U. Köster and U. Schünemann, “Phase transformations in rapidly solidified alloys,” in Rapidly Solidified Alloys, edited by H. H. Liebermann (Marcel Dekker, Inc, 1993), p. 303.
K. F. Kelton, “Crystal nucleation in liquids and glasses,” Solid State Physics 45, 75 (1991).
J. W. Christian, in The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1975), Chap. 10.
D. Turnbull and J. C. Fisher, “Rate of nucleation in condensed systems,” J. Chem. Phys. 17, 71 (1949).
M. Barth, B. Wei, and D. M. Herlach, “Crystal growth in undercooled melts of intermetallic compounds FeSi and CoSi,” Phys. Rev. B 51, 3422 (1995).
D. Kashchiev, “Solution of the non-steady state problem in nucleation kinetics,” Surf. Sci. 14, 209 (1969).
W. Hornfeck, D. Menke, M. Forthaus, S. Subatzus, M. Franke, H.-J. Schöpe, T. Palberg, J. Perlich, and D. M. Herlach, “Nucleation and crystal growth in a suspension of charged colloidal silica spheres with bi-modal size distribution studied by time-resolved ultra-small-angle X-ray scattering,” J. Chem. Phys. 141, 214906 (2014).
A. Härtel, M. Oettel, R. E. Rozas, S. U. Egelhaaf, J. Horbach, and H. Löwen, “Tension and Stiffness of the hard sphere crystal-fluid interface,” Phys. Rev. Lett. 108, 226101 (2012).
S. Auer and D. Frenkel, “Crystallization of weakly charged colloidal spheres: A numerical study,” J. Phys.: Condens. Matter 14, 7667 (2002).
B. B. Laird, “The solid–liquid interfacial free energy of close-packed metals: Hard-spheres and the Turnbull coefficient,” J. Chem. Phys. 115, 2887 (2001).
See for key values of thermodynamics of various substances.
S. Auer and D. Frenkel, “Quantitative predictions for crystal nucleation rates for spherical colloids: A computational approach,” Annu. Rev. Phys. Chem. 55, 333 (2004).
S. R. Ganagalla and S. N. Punnathanam, “Free energy barriers for homogeneous crystal nucleation in a eutectic system of binary hard spheres,” J. Chem. Phys. 138, 174503 (2013).
F. Spaepen and R. B. Meyer, “The surface tension in a structural model for the solid-liquid interface,” Scr. Metall. 10, 257 (1976).
V. Heinonen, A. Mijailovi, C. V. Achim, T. Ala-Nissila, R. E. Rozas, J. Horbach, and H. Löwen, “Bcc crystal-fluid interfacial free energy in Yukawa systems,” J. Chem. Phys. 138, 044705 (2013).
J. J. Hoyt, M. Asta, T. Haxhimali, A. Karma, R. E. Napolitano, R. Trivedi, B. B. Laird, and J. R. Morris, “Crystal-melt interfaces and solidification morphologies in metals and alloys,” Mater. Res. Soc. Bull. 29, 935 (2004).
TEMPUS is a German acronym for Tiegelfreies Elektro-Magnetisches Prozessieren Unter Schwerelosigkeit.
D. Tourret et al., Acta Mater. 59, 46654677 (2011).

Data & Media loading...


Article metrics loading...



Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd