Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. G. Griffin, “Dipolar recoupling in MAS spectra of biological solids,” Nat. Struct. Biol. 5, 508512 (1998).
V. Ladizhansky, “Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins,” Solid State Nucl. Magn. Reson. 36, 119128 (2009).
N. C. Nielsen, L. A. Strassø, and A. B. Nielsen, “Dipolar recoupling,” Top. Curr. Chem. 306, 147 (2012).
E. R. Andrew, A. Bradbury, and R. G. Eades, “Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation,” Nature 183, 18021803 (1959).
A. Schuetz, C. Wasmer, B. Habenstein, R. Verel, J. Greenwald, R. Riek, A. Böckmann, and B. H. Meier, “Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1-227),” Chem. Bio. Chem. 11, 15431551 (2010).
A. McDermott, “Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR,” Annu. Rev. Biophys. 38, 385403 (2009).
G. Comellas and C. M. Rienstra, “Protein structure determination by magic-angle spinning solid-state NMR, and insights into the formation, structure, and stability of amyloid fibrils,” Annu. Rev. Biophys. 42, 515536 (2013).
N. C. Nielsen, H. Bildsoe, H. J. Jakobsen, and M. H. Levitt, “Double-quantum homonuclear rotary resonance—Efficient dipolar recovery in magic-angle-spinning nuclear-magnetic-resonance,” J. Chem. Phys. 101, 18051812 (1994).
M. H. Levitt, “Symmetry in the design of NMR multiple-pulse sequences,” J. Chem. Phys. 128, 052205 (2008).
M. Feike, D. E. Demco, R. Graf, J. Gottwald, S. Hafner, and H. W. Spiess, “Broadband multiple-quantum NMR spectroscopy,” J. Magn. Reson., Ser. A 122, 214221 (1996).
M. Ernst and B. H. Meier, eMagRes (John Wiley & Sons, Ltd., 2007).
R. Verel, M. Ernst, and B. H. Meier, “Adiabatic dipolar recoupling in solid-state NMR: The DREAM scheme,” J. Magn. Reson. 150, 8199 (2001).
A. E. Bennett, J. H. Ok, R. G. Griffin, and S. Vega, “Chemical-shift correlation spectroscopy in rotating solids—Radio frequency-driven dipolar recoupling and longitudinal exchange,” J. Chem. Phys. 96, 86248627 (1992).
A. E. Bennett, C. M. Rienstra, J. M. Griffith, W. G. Zhen, P. T. Lansbury, and R. G. Griffin, “Homonuclear radio frequency-driven recoupling in rotating solids,” J. Chem. Phys. 108, 94639479 (1998).
M. J. Bayro, R. Ramachandran, M. A. Caporini, M. T. Eddy, and R. G. Griffin, “Radio frequency-driven recoupling at high magic-angle spinning frequencies: Homonuclear recoupling sans heteronuclear decoupling,” J. Chem. Phys. 128, 052321 (2008).
P. R. Costa, B. Q. Sun, and R. G. Griffin, “Rotational resonance tickling: Accurate internuclear distance measurement in solids,” J. Am. Chem. Soc. 119, 1082110830 (1997).
N. M. Szeverenyi, M. J. Sullivan, and G. E. Maciel, “Observation of spin exchange by two-dimensional fourier-transform 13C cross polarization-magic-angle spinning,” J. Magn. Reson. 47, 462475 (1982).
V. Chevelkov, C. Shi, H. K. Fasshuber, S. Becker, and A. Lange, “Efficient band-selective homonuclear CO–CA cross-polarization in protonated proteins,” J. Biomol. NMR 56, 303311 (2013).
J. Leppert, B. Heise, O. Ohlenschläger, M. Görlach, and R. Ramachandran, “Broadband RFDR with adiabatic inversion pulses,” J. Biomol. NMR 26, 1324 (2003).
A. A. Maudsley, “Modified Carr-Purcell-Meiboom-Gill sequence for NMR fourier imaging applications,” J. Magn. Reson. (1969) 69, 488491 (1986).
T. Gullion and J. Schaefer, “Elimination of resonance offset effects in rotational-echo, double-resonance NMR,” J. Magn. Reson. (1969) 92, 439442 (1991).
J. T. Nielsen, M. Bjerring, M. D. Jeppesen, R. O. Pedersen, J. M. Pedersen, K. L. Hein, T. Vosegaard, T. Skydstrup, D. E. Otzen, and N. C. Nielsen, “Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy,” Angew. Chem., Int. Ed. 48, 21182121 (2009).
S. Vega, “Fictitious spin-1/2 operator formalism for multiple quantum NMR,” J. Chem. Phys. 68, 55185527 (1978).
A. B. Nielsen, K. O. Tan, R. Shankar, S. Penzel, R. Cadalbert, A. Samoson, B. H. Meier, and M. Ernst, “Theoretical description of RESPIRATION-CP,” Chem. Phys. Lett. 645, 150156 (2016).
I. Scholz, J. D. van Beek, and M. Ernst, “Operator-based Floquet theory in solid-state NMR,” Solid State Nucl. Magn. Reson. 37, 3959 (2010).
See supplementary material at for a SIMPSON script that via a grid search provides optimized adiabatic sweep parameters.[Supplementary Material]
C. Vinod Chandran, P. K. Madhu, N. D. Kurur, and T. Bräuniger, “Swept-frequency two-pulse phase modulation (SWf-TPPM) sequences with linear sweep profile for heteronuclear decoupling in solid-state NMR,” Magn. Reson. Chem. 46, 943947 (2008).
M. Bak, J. T. Rasmussen, and N. C. Nielsen, “SIMPSON: A general simulation program for solid-state NMR spectroscopy,” J. Magn. Reson. 147, 296330 (2000).
Z. Tošner, R. Andersen, B. Stevensson, M. Edén, N. C. Nielsen, and T. Vosegaard, “Computer-intensive simulation of solid-state NMR experiments using SIMPSON,” J. Magn. Reson. 246, 7993 (2014).
M. Bak and N. C. Nielsen, “REPULSION, A novel approach to efficient powder averaging in solid-state NMR,” J. Magn. Reson. 125, 132139 (1997).
M. Bak, R. Schultz, T. Vosegaard, and N. C. Nielsen, “Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR,” J. Magn. Reson. 154, 2845 (2002).
J. S. Frye and G. E. Maciel, “Setting the magic angle using a quadrupolar nuclide,” J. Magn. Reson. (1969) 48, 125131 (1982).
C. R. Morcombe and K. W. Zilm, “Chemical shift referencing in MAS solid state NMR,” J. Magn. Reson. 162, 479486 (2003).
S. Hayashi and K. Hayamizu, “Chemical shift standards in high-resolution solid-state NMR (1) 13C, 29Si, and 1H nuclei,” Bull. Chem. Soc. Jpn. 64, 685687 (1991).
J. Schaefer and E. O. Stejskal, “Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle,” J. Am. Chem. Soc. 98, 10311032 (1976).
G. Metz, X. L. Wu, and S. O. Smith, “Ramped-amplitude cross-polarization in magic-angle-spinning NMR,” J. Magn. Reson., Ser. A 110, 219227 (1994).
A. Equbal, M. Bjerring, P. K. Madhu, and N. C. Nielsen, “A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy,” J. Chem. Phys. 142, 184201 (2015).

Data & Media loading...


Article metrics loading...



The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence to mediate efficient 13CO to 13C polarization transfer for uniformly 13C,15N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly 13C,15N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%–20% depending on the spectral regions of interest.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd