Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/3/10.1063/1.4958461
1.
N. D. Drummond, R. J. Needs, A. Sorouri, and W. M. C. Foulkes, Phys. Rev. B 78, 125106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125106
2.
C. Müller and D. Usvyat, J. Chem. Theory Comput. 9, 5590 (2013).
http://dx.doi.org/10.1021/ct400797w
3.
F. R. Manby, D. Alfè, and M. J. Gillan, Phys. Chem. Chem. Phys. 8, 5178 (2006).
http://dx.doi.org/10.1039/b613676a
4.
S. J. Nolan, M. J. Gillan, D. Alfè, N. L. Allan, and F. R. Manby, Phys. Rev. B 80, 165109 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165109
5.
J. Friedrich and J. Hänchen, J. Chem. Theory Comput. 9, 5381 (2013).
http://dx.doi.org/10.1021/ct4008074
6.
E. Fertitta, D. Koch, B. Paulus, G. Barcza, and Ö. Legeza, e-print arXiv:1605.03904 [cond-mat, physics:physics] (2016).
7.
Y.-y. Ohnishi and S. Hirata, J. Chem. Phys. 135, 094108 (2011).
http://dx.doi.org/10.1063/1.3629843
8.
F. Libisch, C. Huang, and E. A. Carter, Acc. Chem. Res. (2014).
http://dx.doi.org/10.1021/ar500086h
9.
J. D. Goodpaster, N. Ananth, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 133, 084103 (2010).
http://dx.doi.org/10.1063/1.3474575
10.
F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012).
http://dx.doi.org/10.1021/ct300544e
11.
J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 137, 224113 (2012).
http://dx.doi.org/10.1063/1.4770226
12.
T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller III, J. Chem. Phys. 139, 024103 (2013).
http://dx.doi.org/10.1063/1.4811112
13.
I. W. Bulik, W. Chen, and G. E. Scuseria, J. Chem. Phys. 141(5), 054113 (2014).
http://dx.doi.org/10.1063/1.4891861
14.
I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89, 035140 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.035140
15.
G. Knizia and G. K.-L. Chan, J. Chem. Theory Comput. 9, 1428 (2013).
http://dx.doi.org/10.1021/ct301044e
16.
G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.186404
17.
O. Masur, D. Usvyat, and M. Schütz, J. Chem. Phys. 139, 164116 (2013).
http://dx.doi.org/10.1063/1.4826534
18.
D. Usvyat, B. Civalleri, L. Maschio, R. Dovesi, C. Pisani, and M. Schütz, J. Chem. Phys. 134, 214105 (2011).
http://dx.doi.org/10.1063/1.3595514
19.
L. Maschio, D. Usvyat, F. R. Manby, S. Casassa, C. Pisani, and M. Schütz, Phys. Rev. B 76, 075101 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075101
20.
C. Pisani, L. Maschio, S. Casassa, M. Halo, M. Schütz, and D. Usvyat, J. Comput. Chem. 29, 2113 (2008).
http://dx.doi.org/10.1002/jcc.20975
21.
P. Y. Ayala, G. E. Scuseria, and A. Savin, Chem. Phys. Lett. 307, 227 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00498-4
22.
J. Spencer and A. Alavi, Phys. Rev. B 77, 193110 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.193110
23.
L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, Phys. Rev. B 53, 1814 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.1814
24.
P. R. C. Kent, R. Q. Hood, A. J. Williamson, R. J. Needs, W. M. C. Foulkes, and G. Rajagopal, Phys. Rev. B 59, 1917 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1917
25.
F. Bruneval, Phys. Rev. Lett. 108, 256403 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.256403
26.
J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, and J. G. Ángyán, Phys. Rev. Lett. 102, 096404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.096404
27.
R. F. Bishop and K. H. Lührmann, Phys. Rev. B 26, 5523 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.5523
28.
R. F. Bishop and K. H. Lührmann, Phys. Rev. B 17, 3757 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.3757
29.
R. F. Bishop, Theor. Chim. Acta 80, 95 (1991).
http://dx.doi.org/10.1007/BF01119617
30.
P. Nozières and D. Pines, Phys. Rev. 111, 442 (1958).
http://dx.doi.org/10.1103/PhysRev.111.442
31.
M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).
http://dx.doi.org/10.1103/PhysRev.106.364
32.
P. Ziesche, Ann. Phys. 16, 45 (2007).
http://dx.doi.org/10.1002/andp.200610220
33.
L. Onsager, L. Mittag, and M. J. Stephen, Ann. Phys. 473, 71 (1966).
http://dx.doi.org/10.1002/andp.19664730108
34.
S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.076404
35.
J. J. Shepherd, A. Grüneis, G. H. Booth, G. Kresse, and A. Alavi, Phys. Rev. B 86, 035111 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035111
36.
C. Hättig, W. Klopper, A. Köhn, and D. P. Tew, Chem. Rev. 112, 4 (2012).
http://dx.doi.org/10.1021/cr200168z
37.
M. Marsman, A. Grüneis, J. Paier, and G. Kresse, J. Chem. Phys. 130, 184103 (2009).
http://dx.doi.org/10.1063/1.3126249
38.
A. Grüneis, M. Marsman, and G. Kresse, J. Chem. Phys. 133, 074107 (2010).
http://dx.doi.org/10.1063/1.3466765
39.
G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365 (2013).
http://dx.doi.org/10.1038/nature11770
40.
A. Roggero, A. Mukherjee, and F. Pederiva, Phys. Rev. B 88, 115138 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.115138
41.
J. J. Shepherd, T. M. Henderson, and G. E. Scuseria, Phys. Rev. Lett. 112, 133002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.133002
42.
J. J. Shepherd, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 140, 124102 (2014).
http://dx.doi.org/10.1063/1.4867783
43.
J. J. Shepherd and A. Grüneis, Phys. Rev. Lett. 110, 226401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.226401
44.
J. J. Shepherd, G. H. Booth, and A. Alavi, J. Chem. Phys. 136, 244101 (2012).
http://dx.doi.org/10.1063/1.4720076
45.
J. J. Shepherd, G. Booth, A. Grüneis, and A. Alavi, Phys. Rev. B 85, 081103 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.081103
46.
J. S. Spencer and A. J. W. Thom, J. Chem. Phys. 144, 084108 (2016); e-print arXiv:1511.05752.
http://dx.doi.org/10.1063/1.4942173
47.
V. S. Filinov, V. E. Fortov, M. Bonitz, and Z. Moldabekov, Phys. Rev. E 91, 033108 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.033108
48.
T. Schoof, S. Groth, and M. Bonitz, Contrib. Plasma Phys. 55, 136 (2015).
http://dx.doi.org/10.1002/ctpp.201400072
49.
T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 115, 130402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.130402
50.
F. D. Malone, N. S. Blunt, E. W. Brown, D. K. K. Lee, J. S. Spencer, W. M. C. Foulkes, and J. J. Shepherd, e-print arXiv:1602.05104 [cond-mat] (2016).
51.
F. D. Malone, N. S. Blunt, J. J. Shepherd, D. K. K. Lee, J. S. Spencer, and W. M. C. Foulkes, J. Chem. Phys. 143, 044116 (2015).
http://dx.doi.org/10.1063/1.4927434
52.
A. Grüneis, J. J. Shepherd, A. Alavi, D. P. Tew, and G. H. Booth, J. Chem. Phys. 139, 084112 (2013).
http://dx.doi.org/10.1063/1.4818753
53.
A. Grüneis, Phys. Rev. Lett. 115, 066402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.066402
54.
D. Usvyat, J. Chem. Phys. 139, 194101 (2013).
http://dx.doi.org/10.1063/1.4829898
55.
N. Umezawa and S. Tsuneyuki, Phys. Rev. B 69, 165102 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165102
56.
J. Klimeš, M. Kaltak, and G. Kresse, Phys. Rev. B 90, 075125 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.075125
57.
G. H. Booth, T. Tsatsoulis, G. K.-L. Chan, and A. Grüneis, e-print arXiv:1603.06457 [cond-mat, physics:physics] (2016).
58.
S. Hirata, Mol. Phys. 108, 3113 (2010).
http://dx.doi.org/10.1080/00268976.2010.516278
59.
S. Hirata and Y.-y. Ohnishi, Phys. Chem. Chem. Phys. 14, 7800 (2012).
http://dx.doi.org/10.1039/c2cp23958b
60.
T. Yamada, R. P. Brewster, and S. Hirata, J. Chem. Phys. 139, 184107 (2013).
http://dx.doi.org/10.1063/1.4828796
61.
S. Hirata, X. He, M. R. Hermes, and S. Y. Willow, J. Phys. Chem. A 118, 655 (2014).
http://dx.doi.org/10.1021/jp410587b
62.
M. Keeli and S. Hirata, Phys. Rev. B 82, 115107 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115107
63.
T. Shimazaki and S. Hirata, Int. J. Quantum Chem. 109, 2953 (2009).
http://dx.doi.org/10.1002/qua.22176
64.
S. Hirata and T. Shimazaki, Phys. Rev. B 80, 085118 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.085118
65.
Y.-y. Ohnishi and S. Hirata, J. Chem. Phys. 133, 034106 (2010).
http://dx.doi.org/10.1063/1.3455717
66.
A. Grüneis, G. H. Booth, M. Marsman, J. Spencer, A. Alavi, and G. Kresse, J. Chem. Theory Comput. 7, 2780 (2011).
http://dx.doi.org/10.1021/ct200263g
67.
D. Ceperley, Phys. Rev. B 18, 3126 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.3126
68.
X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons, Oxford Graduate Texts, Reprint edition (Oxford University Press, Oxford, 2010).
69.
H. Kwee, S. Zhang, and H. Krakauer, Phys. Rev. Lett. 100, 126404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.126404
70.
G. Baardsen, “Coupled-cluster theory for infinite matter,” Ph.D. thesis, University of Oslo, 2014.
71.
G. Baardsen, K. Leikanger, T. Morris, S. Reimann, S. K. Bogner, and M. Hjorth-Jensen, “Many-body approaches to the homogeneous electron gas in two and three dimensions” (unpublished).
72.
C. Lin, F. H. Zong, and D. M. Ceperley, Phys. Rev. E 64, 016702 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.016702
73.
T. Williams, C. Kelley et al., Gnuplot 5.0, http://gnuplot.sourceforge.net/, 2005.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/3/10.1063/1.4958461
Loading
/content/aip/journal/jcp/145/3/10.1063/1.4958461
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/3/10.1063/1.4958461
2016-07-18
2016-12-04

Abstract

Basis set incompleteness error and finite size error can manifest concurrently in systems for which the two effects are phenomenologically well-separated in length scale. When this is true, we need not necessarily remove the two sources of error simultaneously. Instead, the errors can be found and remedied in different parts of the basis set. This would be of great benefit to a method such as coupled cluster theory since the combined cost of could be separated into and costs with smaller prefactors. In this Communication, we present analysis on a data set due to Baardsen and co-workers, containing 2D uniform electron gas coupled cluster doubles energies for = 0.5, 1.0, and 2.0 a.u. at a wide range of basis set sizes and particle numbers. In obtaining complete basis set limit thermodynamic limit results, we find that within a small and removable error the above assertion is correct for this simple system. We then use this method to obtain similar results for the 3D electron gas at = 1.0, 2.0, and 5.0 a.u. and make comparison to the Ceperley–Alder quantum Monte Carlo results. This approach allows for the combination of methods which separately address finite size effects and basis set incompleteness error.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/3/1.4958461.html;jsessionid=mwqkmD53R7npJF91C6eqmnlN.x-aip-live-02?itemId=/content/aip/journal/jcp/145/3/10.1063/1.4958461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/3/10.1063/1.4958461&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/3/10.1063/1.4958461'
Right1,Right2,Right3,