Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
T. A. Carlson, Photoelectron and Auger Spectroscopy (Plenum, New York, 1975).
K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1969).
M. Lundqvist, D. Edvardsson, P. Baltzer, and B. Wannberg, J. Phys. B: At., Mol. Opt. Phys. 29, 1489 (1996).
M. Lundqvist, D. Edvardsson, P. Baltzer, M. Larsson, and B. Wannberg, J. Phys. B: At., Mol. Opt. Phys. 29, 499 (1996).
M. Ahmad, P. Lablanquie, F. Penent, J. G. Lambourne, R. I. Hall, and J. H. D. Eland, J. Phys. B: At., Mol. Opt. Phys. 39, 3599 (2006).
M. Hochlaf, R. I. Hall, F. Penent, H. Kjeldsen, P. Lablanquie, M. Lavollée, and J. H. D. Eland, Chem. Phys. 207, 159 (1996).
G. Dawber, A. G. McConkey, L. Avaldi, M. A. MacDonald, G. C. King, and R. I. Hall, J. Phys. B: At., Mol. Opt. Phys. 27, 2191 (1994).
J. H. D. Eland, Chem. Phys. 294, 171 (2003).
D. Edvardsson, S. lunell, F. Rakowitz, C. M. Marian, and L. Karlsson, Chem. Phys. 229, 203 (1998).
R. W. Wetmore and R. K. Boyd, J. Phys. Chem. 90, 5540 (1986).
J. Senekovitsch, S. O’Neill, P. Knowles, and H. J. Werner, J. Phys. Chem. 95, 2125 (1991).
C. Miron and P. Morin, Nucl. Instrum. Methods Phys. Res., Sect. A 601, 66 (2009).
C. Miron, M. Simon, N. Leclercq, D. L. Hansen, and P. Morin, Phys. Rev. Lett. 81, 4104 (1998).
Y. Hikosaka, Y. Shibata, K. Soejima, H. Iwayama, and E. Shigemasa, Chem. Phys. Lett. 603, 46 (2014).
W. Eberhardt, E. W. Plummer, I. Lyo, R. Carr, and W. K. Ford, Phys.Rev.Lett. 58, 207 (1987).
C. Miron, M. Simon, N. Leciercq, and P. Morin, Rev. Sci. Instrum. 68, 3728 (1997).
D. Ceolin, C. Miron, M. Simon, and P. Morin, J. Electron Spectrosc. Relat. Phenom. 141, 171 (2004).
R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Phys. Rep. 330, 95 (2000).
See for the information about the detector of DLD40.
T. Kaneyasu, Y. Hikosaka, and E. Shigemasa, AIP Conf. Proc. 879, 1793 (2007).
T. Kaneyasu, Y. Hikosaka, and E. Shigemasa, J. Electron Spectrosc. Relat. Phenom. 156–158, 279 (2007).
U. Gelius, J. Electron Spectrosc. Relat. Phenom. 5, 985 (1974).
H. Årgen, J. Chem. Phys. 75, 1267 (1981).
M. E. Moddeman, T. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971).
C. Liegener, J. Phys. B: At., Mol. Opt. Phys. 16, 4281 (1983).
K. Ueda, R. Püttner, N. A. Cherepkov, F. Gel’mukhanov, and M. Ehara, Eur. Phys. J.: Spec. Top. 169, 95 (2009).
R. Püttner, H. Fukuzawa, X.-J. Liu, S. K. Semenov, N. A. Cherepkov, T. Tanaka, M. Hoshino, H. Tanaka, and K. Ueda, J. Phys. B: At., Mol. Opt. Phys. 41, 141001 (2008).
S. L. Sorensen, C. Miron, R. Feifel, M. N. Piancastelli, O. Bjöneholm, and S. Svensson, Chem. Phys. Lett. 456, 1 (2008).
S. Hsieh and J. H. D. Eland, J. Phys. B: At., Mol. Opt. Phys. 29, 5795 (1996).
S. K. Semenov, M. S. Schöffler, J. Titze, N. Petridis, T. Jahnke, K. Cole, L. Ph.H. Schmidt, A. Czasch, D. Akoury, O. Jagutzki, J. B. Williams, T. Osipov, S. Lee, M. H. Prior, A. Belkacem, A. L. Landers, H. Schmidt-Böcking, Th. Weber, N. A. Cherepkov, and R. Dörner, Phys. Rev. A 81, 043426 (2010).
E. Fainelli, F. Maracci, and L. Avaldi, J. Electron Spectrosc. Relat. Phenom. 123, 277 (2002).
P. Franceschi, D. Ascenzi, P. Tosi, R. Thissen, J. Žabka, J. Roithová, C. L. Ricketts, M. De Simone, and M. Coreno, J. Chem. Phys. 126, 134310 (2007).
T. Kaneyasu, Y. Hikosaka, E. Shigemasa, P. Lablanquie, F. Penent, and K. Ito, J. Phys. B: At., Mol. Opt. Phys. 41, 135101 (2008).
R. Feifel, J. H. D. Eland, R. J. Squibb, M. Mucke, S. Zagorodskikh, P. Linusson, F. Tarantelli, P. Kolorenč, and V. Averbukh, Phys. Rev. Lett. 116, 073001 (2016).
See and for nitrogen atomic levels and bond-dissociation energy of nitrogen molecules.

Data & Media loading...


Article metrics loading...



An Auger-electron–photoion coincidence (AEPICO) method has been applied to study the stability and dissociation dynamics of dicationic states after the N K-shell photoionization of nitrogen molecules. From time-of-flight and kinetic energy analyses of the product ions, we have obtained coincident Auger spectra associated with metastable states of N ++ ions and dissociative states leading to N ++ → N+ + N+ and N++ + N. To investigate the production of dissociative states, we present two-dimensional AEPICO maps which reveal the correlations between the binding energies of the Auger final states and the ion kinetic energy release. These correlations have been used to determine the dissociation limits of individual Auger final states.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd