Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/3/10.1063/1.4958620
1.
T. A. Carlson, Photoelectron and Auger Spectroscopy (Plenum, New York, 1975).
2.
K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1969).
3.
M. Lundqvist, D. Edvardsson, P. Baltzer, and B. Wannberg, J. Phys. B: At., Mol. Opt. Phys. 29, 1489 (1996).
http://dx.doi.org/10.1088/0953-4075/29/8/013
4.
M. Lundqvist, D. Edvardsson, P. Baltzer, M. Larsson, and B. Wannberg, J. Phys. B: At., Mol. Opt. Phys. 29, 499 (1996).
http://dx.doi.org/10.1088/0953-4075/29/3/016
5.
M. Ahmad, P. Lablanquie, F. Penent, J. G. Lambourne, R. I. Hall, and J. H. D. Eland, J. Phys. B: At., Mol. Opt. Phys. 39, 3599 (2006).
http://dx.doi.org/10.1088/0953-4075/39/17/016
6.
M. Hochlaf, R. I. Hall, F. Penent, H. Kjeldsen, P. Lablanquie, M. Lavollée, and J. H. D. Eland, Chem. Phys. 207, 159 (1996).
http://dx.doi.org/10.1016/0301-0104(96)00056-0
7.
G. Dawber, A. G. McConkey, L. Avaldi, M. A. MacDonald, G. C. King, and R. I. Hall, J. Phys. B: At., Mol. Opt. Phys. 27, 2191 (1994).
http://dx.doi.org/10.1088/0953-4075/27/11/014
8.
J. H. D. Eland, Chem. Phys. 294, 171 (2003).
http://dx.doi.org/10.1016/j.chemphys.2003.08.001
9.
D. Edvardsson, S. lunell, F. Rakowitz, C. M. Marian, and L. Karlsson, Chem. Phys. 229, 203 (1998).
http://dx.doi.org/10.1016/S0301-0104(97)00371-6
10.
R. W. Wetmore and R. K. Boyd, J. Phys. Chem. 90, 5540 (1986).
http://dx.doi.org/10.1021/j100280a013
11.
J. Senekovitsch, S. O’Neill, P. Knowles, and H. J. Werner, J. Phys. Chem. 95, 2125 (1991).
http://dx.doi.org/10.1021/j100159a010
12.
C. Miron and P. Morin, Nucl. Instrum. Methods Phys. Res., Sect. A 601, 66 (2009).
http://dx.doi.org/10.1016/j.nima.2008.12.104
13.
C. Miron, M. Simon, N. Leclercq, D. L. Hansen, and P. Morin, Phys. Rev. Lett. 81, 4104 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4104
14.
Y. Hikosaka, Y. Shibata, K. Soejima, H. Iwayama, and E. Shigemasa, Chem. Phys. Lett. 603, 46 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.04.030
15.
W. Eberhardt, E. W. Plummer, I. Lyo, R. Carr, and W. K. Ford, Phys.Rev.Lett. 58, 207 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.207
16.
C. Miron, M. Simon, N. Leciercq, and P. Morin, Rev. Sci. Instrum. 68, 3728 (1997).
http://dx.doi.org/10.1063/1.1148017
17.
D. Ceolin, C. Miron, M. Simon, and P. Morin, J. Electron Spectrosc. Relat. Phenom. 141, 171 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.06.014
18.
R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Phys. Rep. 330, 95 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00109-X
19.
See http://www.roentdek.com for the information about the detector of DLD40.
20.
T. Kaneyasu, Y. Hikosaka, and E. Shigemasa, AIP Conf. Proc. 879, 1793 (2007).
http://dx.doi.org/10.1063/1.2436417
21.
T. Kaneyasu, Y. Hikosaka, and E. Shigemasa, J. Electron Spectrosc. Relat. Phenom. 156–158, 279 (2007).
http://dx.doi.org/10.1016/j.elspec.2006.12.014
22.
U. Gelius, J. Electron Spectrosc. Relat. Phenom. 5, 985 (1974).
http://dx.doi.org/10.1016/0368-2048(74)85064-4
23.
H. Årgen, J. Chem. Phys. 75, 1267 (1981).
http://dx.doi.org/10.1063/1.442176
24.
M. E. Moddeman, T. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971).
http://dx.doi.org/10.1063/1.1676411
25.
C. Liegener, J. Phys. B: At., Mol. Opt. Phys. 16, 4281 (1983).
http://dx.doi.org/10.1088/0022-3700/16/23/011
26.
K. Ueda, R. Püttner, N. A. Cherepkov, F. Gel’mukhanov, and M. Ehara, Eur. Phys. J.: Spec. Top. 169, 95 (2009).
http://dx.doi.org/10.1140/epjst/e2009-00978-7
27.
R. Püttner, H. Fukuzawa, X.-J. Liu, S. K. Semenov, N. A. Cherepkov, T. Tanaka, M. Hoshino, H. Tanaka, and K. Ueda, J. Phys. B: At., Mol. Opt. Phys. 41, 141001 (2008).
http://dx.doi.org/10.1088/0953-4075/41/14/141001
28.
S. L. Sorensen, C. Miron, R. Feifel, M. N. Piancastelli, O. Bjöneholm, and S. Svensson, Chem. Phys. Lett. 456, 1 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.03.015
29.
S. Hsieh and J. H. D. Eland, J. Phys. B: At., Mol. Opt. Phys. 29, 5795 (1996).
http://dx.doi.org/10.1088/0953-4075/29/23/021
30.
S. K. Semenov, M. S. Schöffler, J. Titze, N. Petridis, T. Jahnke, K. Cole, L. Ph.H. Schmidt, A. Czasch, D. Akoury, O. Jagutzki, J. B. Williams, T. Osipov, S. Lee, M. H. Prior, A. Belkacem, A. L. Landers, H. Schmidt-Böcking, Th. Weber, N. A. Cherepkov, and R. Dörner, Phys. Rev. A 81, 043426 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.043426
31.
E. Fainelli, F. Maracci, and L. Avaldi, J. Electron Spectrosc. Relat. Phenom. 123, 277 (2002).
http://dx.doi.org/10.1016/S0368-2048(02)00027-0
32.
P. Franceschi, D. Ascenzi, P. Tosi, R. Thissen, J. Žabka, J. Roithová, C. L. Ricketts, M. De Simone, and M. Coreno, J. Chem. Phys. 126, 134310 (2007).
http://dx.doi.org/10.1063/1.2714521
33.
T. Kaneyasu, Y. Hikosaka, E. Shigemasa, P. Lablanquie, F. Penent, and K. Ito, J. Phys. B: At., Mol. Opt. Phys. 41, 135101 (2008).
http://dx.doi.org/10.1088/0953-4075/41/13/135101
34.
R. Feifel, J. H. D. Eland, R. J. Squibb, M. Mucke, S. Zagorodskikh, P. Linusson, F. Tarantelli, P. Kolorenč, and V. Averbukh, Phys. Rev. Lett. 116, 073001 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.073001
35.
See http://www.nist.gov/pml/data/asd.cfm and http://webbook.nist.gov/chemistry/ for nitrogen atomic levels and bond-dissociation energy of nitrogen molecules.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/3/10.1063/1.4958620
Loading
/content/aip/journal/jcp/145/3/10.1063/1.4958620
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/3/10.1063/1.4958620
2016-07-18
2016-12-11

Abstract

An Auger-electron–photoion coincidence (AEPICO) method has been applied to study the stability and dissociation dynamics of dicationic states after the N K-shell photoionization of nitrogen molecules. From time-of-flight and kinetic energy analyses of the product ions, we have obtained coincident Auger spectra associated with metastable states of N ++ ions and dissociative states leading to N ++ → N+ + N+ and N++ + N. To investigate the production of dissociative states, we present two-dimensional AEPICO maps which reveal the correlations between the binding energies of the Auger final states and the ion kinetic energy release. These correlations have been used to determine the dissociation limits of individual Auger final states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/3/1.4958620.html;jsessionid=TWkHBm1IU4Qd_IT5vTH6CCFe.x-aip-live-06?itemId=/content/aip/journal/jcp/145/3/10.1063/1.4958620&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/3/10.1063/1.4958620&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/3/10.1063/1.4958620'
Right1,Right2,Right3,