Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/3/10.1063/1.4958968
1.
D. Mustafi and K. Palczewski, “Topology of class AG protein-coupled receptors: Insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors,” Mol. Pharm. 75(1), 1 (2009).
http://dx.doi.org/10.1124/mol.108.051938
2.
S. Rinaldia, F. Melaccioa, S. Gozemb, F. Fanellic, and M. Olivuccia, “Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1714 (2014).
http://dx.doi.org/10.1073/pnas.1309508111
3.
R. W. Schoenlein, J. Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue-green 10(fs) pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58(8), 801 (1991).
http://dx.doi.org/10.1063/1.104494
4.
R. W. Schoenlein, L. A. Peteanu, Q. Wang, R. A. Mathies, and C. V. Shank, “Femtosecond dynamics of cistrans isomerization in a visual pigment analog: Isorhodopsin,” J. Phys. Chem. 97(46), 12087 (1993).
http://dx.doi.org/10.1021/j100148a040
5.
K. Palczewski, “G protein-coupled receptor rhodopsin,” Annu. Rev. Biochem. 75, 743767 (2006).
http://dx.doi.org/10.1146/annurev.biochem.75.103004.142743
6.
R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “The first step in vision: Femtosecond isomerization of rhodopsin,” Science 254(5030), 412 (1991).
http://dx.doi.org/10.1126/science.1925597
7.
D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440 (2010).
http://dx.doi.org/10.1038/nature09346
8.
R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cistrans isomerization in bacteriorhodopsin,” Science 240, 777 (1988).
http://dx.doi.org/10.1126/science.3363359
9.
Q. Wang, R. W. Schoenlein, L. A. Pateanu, R. A. Mathies, and C. V. Shank, “Vibrational coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422 (1994).
http://dx.doi.org/10.1126/science.7939680
10.
P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310, 1006 (2005).
http://dx.doi.org/10.1126/science.1118379
11.
V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313, 1257 (2006).
http://dx.doi.org/10.1126/science.1130747
12.
V. I. Prokhorenko, A. M. Nagy, L. S. Brown, and R. J. D. Miller, “On the mechanism of weak-field coherent control of retinal isomerization in bacteriorhodopsin,” Chem. Phys. 341, 296 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.07.031
13.
C. A. Arango and P. Brumer, “Communication: One-photon phase control of cistrans isomerization in retinal,” J. Chem. Phys. 138(7), 071104 (2013).
http://dx.doi.org/10.1063/1.4792834
14.
M. Abe, Y. Ohtsuki, Y. Fujimura, and W. Domcke, “Optimal control of ultrafast cistrans photoisomerization of retinal in rhodopsin via a conical intersection,” J. Chem. Phys. 123(14), 144508 (2005).
http://dx.doi.org/10.1063/1.2034488
15.
J. Werschnik and E. K. U. Gross, “Quantum optimal control theory,” J. Phys. B 40(18), R175 (2007).
http://dx.doi.org/10.1088/0953-4075/40/18/R01
16.
R. D. Guerrero, C. A. Arango, and A. Reyes, “Analytical optimal pulse shapes obtained with the aid of genetic algorithms,” J. Chem. Phys. 143(12), 124108 (2015).
http://dx.doi.org/10.1063/1.4931449
17.
T. Grinev and P. Brumer, “Theory of perturbative pulse train based coherent control,” J. Chem. Phys. 140, 12 (2014).
http://dx.doi.org/10.1063/1.4869080
18.
J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (U Michigan Press, 1975).
19.
S. Hahn and G. Stock, “Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin,” J. Phys. Chem. B 104(6), 1146 (2000).
http://dx.doi.org/10.1021/jp992939g
20.
Neglecting any dependence of the transition dipole moment, μ, on the molecular coordinates.
21.
F. Grossmann, L. Feng, G. Schmidt, T. Kunert, and R. Schmidt, “Optimal control of a molecular cistrans isomerization model,” Europhys. Lett. 60(2), 201 (2002).
http://dx.doi.org/10.1209/epl/i2002-00339-6
22.
J. M. Sanz-Sernaand and A. Portillo, “Classical numerical integrators for wave-packet dynamics,” J. Chem. Phys. 104(6), 2349 (1996).
http://dx.doi.org/10.1063/1.470930
23.
M. D. Feit, J. A. Fleck, and A. Steiger, “Solution of the Schrödinger equation by a spectral method,” J. Comput. Phys. 47(3), 412 (1982).
http://dx.doi.org/10.1016/0021-9991(82)90091-2
24.
H. Takuya, F. Takao, S. Yoshi-Ichi, and S. Toshinori, “Probing ultrafast internal conversion through conical intersection via time-energy map of photoelectron angular anisotropy,” J. Am. Chem. Soc. 131(30), 10392 (2009).
http://dx.doi.org/10.1021/ja904780b
25.
V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “6-31g* basis set for atoms K through Zn,” J. Chem. Phys. 109(4), 1223 (1998).
http://dx.doi.org/10.1063/1.476673
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/3/10.1063/1.4958968
Loading
/content/aip/journal/jcp/145/3/10.1063/1.4958968
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/3/10.1063/1.4958968
2016-07-15
2016-12-08

Abstract

We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero , J. Chem. Phys. (12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the - photoisomerization of 11- retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/3/1.4958968.html;jsessionid=lSfUxAnZoriwltUkqw6DO_qM.x-aip-live-06?itemId=/content/aip/journal/jcp/145/3/10.1063/1.4958968&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/3/10.1063/1.4958968&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/3/10.1063/1.4958968'
Right1,Right2,Right3,