Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/3/10.1063/1.4959035
1.
F. H. Stillinger, Energy Landscapes, Inherent Structures, and Condensed-Matter Phenomena (Princeton University Press, Princeton, 2016).
2.
F. Sciortino, J. Stat. Mech.: Theory Exp. 2005, P05015.
http://dx.doi.org/10.1088/1742-5468/2005/05/p05015
3.
K. F. Freed, J. Chem. Phys. 119, 5730 (2003).
http://dx.doi.org/10.1063/1.1600716
4.
D. V. Matyushov, Phys. Rev. E 76, 011511 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.011511
5.
C. G. Gray and K. E. Gubbins, Theory of Molecular Liquids (Clarendon Press, Oxford, 1984).
6.
F. H. Stillinger and P. G. Debenedetti, Annu. Rev. Condens. Matter Phys. 4, 263 (2013).
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184329
7.
G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
8.
C. A. Angell, Science 267, 1924 (1995).
http://dx.doi.org/10.1126/science.267.5206.1924
9.
R. Richert and A. C. Angell, J. Chem. Phys. 108, 9016 (1998).
http://dx.doi.org/10.1063/1.476348
10.
T. Hecksher, A. I. Nielsen, N. B. Olsen, and J. C. Dyre, Nat. Phys. 4, 737 (2008).
http://dx.doi.org/10.1038/nphys1033
11.
V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
12.
B. Derrida, Phys. Rev. Lett. 45, 79 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.79
13.
C. T. Moynihan and C. A. Angell, J. Non-Cryst. Solids 274, 131 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00198-8
14.
M. S. Shell and P. G. Debenedetti, Phys. Rev. E 69, 051102 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.051102
15.
D. V. Matyushov and C. A. Angell, J. Chem. Phys. 126, 094501 (2007).
http://dx.doi.org/10.1063/1.2538712
16.
K. Ito, C. T. Moynihan, and C. A. Angell, Nature 398, 492 (1999).
http://dx.doi.org/10.1038/19042
17.
L.-M. Martinez and C. A. Angell, Nature 410, 663 (2001).
http://dx.doi.org/10.1038/35070517
18.
L.-M. Wang, C. A. Angell, and R. Richert, J. Chem. Phys. 125, 074505 (2006).
http://dx.doi.org/10.1063/1.2244551
19.
P. Lunkenheimer, U. Schneider, R. Brand, and A. Loid, Contemp. Phys. 41, 15 (2010).
http://dx.doi.org/10.1080/001075100181259
20.
R. Richert, Adv. Chem. Phys. 156, 101 (2015).
21.
G. P. Johari, J. Chem. Phys. 138, 154503 (2013).
http://dx.doi.org/10.1063/1.4799268
22.
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).
23.
The temperature derivative of the dielectric constant needs to refer to constant volume V. The entropy is derived by taking the temperature derivative of the free energy of a polarized dielectric at both the constant volume V and constant dielectric displacement (see Eq. (10.18) in Ref. 22). The constant-volume and constant-pressure derivatives of the dielectric constant can be related through thermodynamic formula involving the isobaric expansivity and isothermal compressibility (see Eq. (12) in Ref. 53).
24.
J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 124, 064901 (2006).
http://dx.doi.org/10.1063/1.2166391
25.
G. Stell, in Statistical Mechanics. Part A: Equilibrium Techniques, edited by B. J. Berne (Plenum, New York, 1977).
26.
B. Larsen, J. C. Rasaiah, and G. Stell, Mol. Phys. 33, 987 (1977).
http://dx.doi.org/10.1080/00268977700100901
27.
H. C. Andersen, D. Chandler, and J. D. Weeks, Adv. Chem. Phys. 34, 105 (1976).
28.
M. S. Shell, P. G. Debenedetti, E. LaNave, and F. Sciortino, J. Chem. Phys. 118, 8821 (2003).
http://dx.doi.org/10.1063/1.1566943
29.
P. G. Debenedetti, F. H. Stillinger, and M. S. Shell, J. Phys. Chem. B 107, 14434 (2003).
http://dx.doi.org/10.1021/jp030885b
30.
A. Heuer and S. Büchner, J. Phys.: Condens. Matter 12, 6535 (2000).
http://dx.doi.org/10.1088/0953-8984/12/29/325
31.
F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett. 83, 3214 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.3214
32.
F. H. Stillinger, J. Chem. Phys. 88, 7818 (1988).
http://dx.doi.org/10.1063/1.454295
33.
S. Tatsumi, S. Aso, and O. Yamamuro, Phys. Rev. Lett. 109, 045701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.045701
34.
J. D. Stevenson and P. G. Wolynes, J. Phys. Chem. B 109, 15093 (2005).
http://dx.doi.org/10.1021/jp052279h
35.
F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 102, 6251 (1995).
http://dx.doi.org/10.1063/1.469071
36.
D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey, B. Jakobsen, T. Christensen, N. B. Olsen, T. B. Schroder, D. Fragiadakis, R. Casalini, C. Michael Roland, J. C. Dyre, and K. Niss, Nat. Phys. 7, 817 (2011).
http://dx.doi.org/10.1038/nphys2031
37.
C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R03
38.
M. Naoki and S. Koeda, J. Phys. Chem. 93, 948 (1989).
http://dx.doi.org/10.1021/j100339a078
39.
J. S. Høye and G. Stell, J. Chem. Phys. 72, 1597 (1980).
http://dx.doi.org/10.1063/1.439359
40.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
41.
C. T. Moynihan and A. V. Lesikar, Ann. N. Y. Acad. Sci. 371, 151 (1981).
http://dx.doi.org/10.1111/j.1749-6632.1981.tb55448.x
42.
A. R. Young-Gonzales, S. Samanta, and R. Richert, J. Chem. Phys. 143, 104504 (2015).
http://dx.doi.org/10.1063/1.4929988
43.
C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), Vol. 1.
44.
G. Stell, G. N. Patey, and J. S. Høye, Adv. Chem. Phys. 48, 183 (1981).
45.
M. S. Wertheim, Mol. Phys. 37, 83 (1979).
http://dx.doi.org/10.1080/00268977900100081
46.
B. Kabtoul, R. J. Jiménez-Riobóo, and M. A. Ramos, Philos. Mag. 88, 4197 (2008).
http://dx.doi.org/10.1080/14786430802484881
47.
O. Yamamuro, I. Tsukushi, and A. Lindqvist, J. Phys. Chem. 102, 1605 (1998).
http://dx.doi.org/10.1021/jp973439v
48.
M. A. Ramos, M. Hassaine, and B. Kabtoul, Low Temp. Phys. 39, 600 (2013).
http://dx.doi.org/10.1063/1.4807147
49.
I. S. Klein and C. A. Angell, “Excess thermodynamic properties of glassforming liquids: the rational scaling of heat capacities, and the thermodynamic fragility dilemma resolved,” J. Non-Cryst. Solids (in press).
50.
J. C. Mauro and M. M. Smedskjaer, J. Non-Cryst. Solids 396-397, 41 (2014).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.04.009
51.
J. S. Langer, Phys. Rev. Lett. 97, 115704 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.115704
52.
L.-M. Wang, Y. Zhao, M. Sun, R. Liu, and Y. Tian, Phys. Rev. E 82, 062502 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.062502
53.
D. V. Matyushov and R. Richert, J. Chem. Phys. 144, 041102 (2016).
http://dx.doi.org/10.1063/1.4941089
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/3/10.1063/1.4959035
Loading
/content/aip/journal/jcp/145/3/10.1063/1.4959035
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/3/10.1063/1.4959035
2016-07-20
2016-12-10

Abstract

A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter /, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/3/1.4959035.html;jsessionid=mDUmmGcLwV5Q9tlCOce63OC0.x-aip-live-02?itemId=/content/aip/journal/jcp/145/3/10.1063/1.4959035&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/3/10.1063/1.4959035&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/3/10.1063/1.4959035'
Right1,Right2,Right3,