Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/4/10.1063/1.4958804
1.
Y. Hori, in Modern Aspects of Electrochemistry, edited by C. Vayenas, R. White, and M. Gamboa-Aldeco (Springer, New York, 2008), Vol. 42, Chap. 3, pp. 89189.
2.
M. Gattrell, N. Gupta, and A. Co, J. Electroanal. Chem. 594, 1 (2006).
http://dx.doi.org/10.1016/j.jelechem.2006.05.013
3.
J. Szanyi and D. W. Goodman, Catal. Lett. 10, 383 (1991).
http://dx.doi.org/10.1007/BF00769173
4.
T. Matsumoto, R. A. Bennett, P. Stone, T. Yamada, K. Domen, and M. Bowker, Surf. Sci. 471, 225 (2001).
http://dx.doi.org/10.1016/S0039-6028(00)00918-3
5.
S. Y. Lee, N. Mettlach, N. Nguyen, Y. M. Sun, and J. M. White, Appl. Surf. Sci. 206, 102 (2003).
http://dx.doi.org/10.1016/S0169-4332(02)01239-4
6.
A. K. Mishra and N. H. de Leeuw, “Mechanistic insights into the Cu(I) oxide-catalyzed conversion of CO2 to fuels and chemicals: A DFT approach,” J. CO2 Util. (in press).
http://dx.doi.org/10.1016/j.jcou.2016.02.008
7.
M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz, and J. C. Flake, J. Electrochem. Soc. 158, E45 (2011).
http://dx.doi.org/10.1149/1.3561636
8.
G. Ghadimkhani, N. R. de Tacconi, W. Chanmanee, C. Janaky, and K. Rajeshwar, Chem. Commun. 49, 1297 (2013).
http://dx.doi.org/10.1039/c2cc38068d
9.
C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors (Basel) 10, 2088 (2010).
http://dx.doi.org/10.3390/s100302088
10.
O. Lupan, V. Cretu, V. Postica, N. Ababii, O. Polonskyi, V. Kaidas, F. Schütt, Y. K. Mishra, E. Monaico, I. Tiginyanu, V. Sontea, T. Strunskus, F. Faupel, and R. Adelung, Sens. Actuators, B 224, 434 (2016).
http://dx.doi.org/10.1016/j.snb.2015.10.042
11.
V. Cretu, V. Postica, A. K. Mishra, M. Hoppe, I. Tiginyanu, Y. K. Mishra, L. Chow, N. H. de Leeuw, R. Adelung, and O. Lupan, J. Mater. Chem. 4, 6527 (2016).
http://dx.doi.org/10.1039/C6TA01355D
12.
A. K. Mishra, A. Roldan, and N. H. de Leeuw, J. Phys. Chem. C 120, 2198 (2016).
http://dx.doi.org/10.1021/acs.jpcc.5b10431
13.
Z. K. Zheng, B. B. Huang, Z. Y. Wang, M. Guo, X. Y. Qin, X. Y. Zhang, P. Wang, and Y. Dai, J. Phys. Chem. C 113, 14448 (2009).
http://dx.doi.org/10.1021/jp904198d
14.
B. Z. Sun, W. K. Chen, and Y. J. Xu, J. Chem. Phys. 133, 154502 (2010).
http://dx.doi.org/10.1063/1.3489663
15.
C. Li, F. Wang, S. F. Li, Q. Sun, and Y. Jia, Phys. Lett. A 374, 2994 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.05.029
16.
B. Z. Sun, W. K. Chen, X. Wang, Y. Li, and C. H. Lu, Chin. J. Inorg. Chem. 24, 340 (2008).
17.
W.-K. Chen, B.-Z. Sun, X. Wang, and C.-H. Lu, J. Theor. Comput. Chem. 7, 263 (2008).
http://dx.doi.org/10.1142/S0219633608003733
18.
H. Wu, N. Zhang, Z. Cao, H. Wang, and S. Hong, Int. J. Quantum Chem. 112, 2532 (2012).
http://dx.doi.org/10.1002/qua.23250
19.
H. Wu, N. Zhang, H. Wang, and S. Hong, Chem. Phys. Lett. 568-569, 84 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.03.032
20.
Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, and Y. Li, Nano Lett. 7, 3723 (2007).
http://dx.doi.org/10.1021/nl0721259
21.
M. Pang and H. C. Zeng, Langmuir 26, 5963 (2010).
http://dx.doi.org/10.1021/la904292t
22.
Y. Sui, W. Fu, H. Yang, Y. Zeng, Y. Zhang, Q. Zhao, Y. Li, X. Zhou, Y. Leng, M. Li, and G. Zou, Cryst. Growth Des. 10, 99 (2009).
http://dx.doi.org/10.1021/cg900437x
23.
X. Zhao, Z. Bao, C. Sun, and D. Xue, J. Cryst. Growth 311, 711 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.081
24.
S. Sun, F. Zhou, L. Wang, X. Song, and Z. Yang, Cryst. Growth Des. 10, 541 (2009).
http://dx.doi.org/10.1021/cg900756u
25.
S. Sun, C. Kong, S. Yang, L. Wang, X. Song, B. Ding, and Z. Yang, CrystEngComm 13, 2217 (2011).
http://dx.doi.org/10.1039/c0ce00679c
26.
S. Sun, X. Song, Y. Sun, D. Deng, and Z. Yang, Catal. Sci. Technol. 2, 925 (2012).
http://dx.doi.org/10.1039/c2cy00530a
27.
E. L. Uzunova, N. Seriani, and H. Mikosch, Phys. Chem. Phys. 17, 11088 (2015).
http://dx.doi.org/10.1039/C5CP01267H
28.
L. I. Bendavid and E. A. Carter, J. Phys. Chem. C 117, 26048 (2013).
http://dx.doi.org/10.1021/jp407468t
29.
L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 174112 (2006).
http://dx.doi.org/10.1103/physrevb.73.174112
30.
L. Y. Isseroff and E. A. Carter, Phys. Rev. B 85, 235142 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235142
31.
M. Nolan and S. D. Elliott, Phys. Chem. Chem. Phys. 8, 5350 (2006).
http://dx.doi.org/10.1039/b611969g
32.
D. O. Scanlon, B. J. Morgan, and G. W. Watson, J. Chem. Phys. 131, 124703 (2009).
http://dx.doi.org/10.1063/1.3231869
33.
C. E. Ekuma, V. I. Anisimov, J. Moreno, and M. Jarrell, Eur. Phys. J. B 87, 23 (2014).
http://dx.doi.org/10.1140/epjb/e2013-40949-5
34.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
35.
G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
36.
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
37.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
38.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
39.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
40.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
41.
G. W. Watson, E. T. Kelsey, N. H. de Leeuw, J. D. Harris, and S. C. Parker, J. Chem. Soc., Faraday Trans. 92, 433 (1996).
http://dx.doi.org/10.1039/ft9969200433
42.
P. W. Tasker, J. Phys. C: Solid State Phys. 12, 4977 (1979).
http://dx.doi.org/10.1088/0022-3719/12/22/036
43.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
44.
G. Wulff, Z. Kristallogr. 34, 449 (1901).
http://dx.doi.org/10.1524/zkri.1901.34.1.449
45.
S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
46.
A. Werner and H. D. Hochheimer, Phys. Rev. B 25, 5929 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.5929
47.
A. Soon, M. Todorova, B. Delley, and C. Stampfl, Phys. Rev. B 75, 125420 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125420
48.
J. A. Assimos and D. Trivich, Phys. Status Solidi A 26, 477 (1974).
http://dx.doi.org/10.1002/pssa.2210260210
49.
B. Z. Sun, W. K. Chen, X. Wang, and C. H. Lu, Appl. Surf. Sci. 253, 7501 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.03.042
50.
H. J. Freund and M. W. Roberts, Surf. Sci. Rep. 25, 225 (1996).
http://dx.doi.org/10.1016/S0167-5729(96)00007-6
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/4/10.1063/1.4958804
Loading
/content/aip/journal/jcp/145/4/10.1063/1.4958804
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/4/10.1063/1.4958804
2016-07-29
2016-09-28

Abstract

Copper has many applications, particularly in electro-catalysis, where the oxidation state of the copper electrode plays a significant role in the selectivity towards products. Although copper-based materials have clear potential as catalysts in the reduction of CO and conversion to products, fundamental understanding of CO adsorption and activation on different copper oxide surfaces is still limited. We have used DFT+U methodology to study the surface reconstruction of the three most exposed (111), (110), and (001) surfaces of Cu O with different possible terminations. Considering several adsorbate geometries, we have investigated CO adsorption on five different possible terminations and proposed eight different configurations in which CO binds with the surface. Similar to earlier findings, CO binds weakly with the most stable Cu O(111):O surface showing no molecular activation, whereas a number of other surfaces, which can appear in the Cu O particles morphology, show stronger binding as well as activation of the CO molecule. Different CO coverages were studied and a detailed structural and electronic charge analysis is presented. The activation of the CO molecule is characterized by structural transformations and charge transfer between the surface and the CO molecule, which is further confirmed by considerable red shifts in the vibrational frequencies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/4/1.4958804.html;jsessionid=gz_sEu7awGrG6_1JxmiOr46i.x-aip-live-06?itemId=/content/aip/journal/jcp/145/4/10.1063/1.4958804&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/4/10.1063/1.4958804&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/4/10.1063/1.4958804'
Right1,Right2,Right3,