Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/4/10.1063/1.4959124
1.
N. Wiener, J. Math. Phys. 2, 131 (1923).
http://dx.doi.org/10.1002/sapm192321131
2.
A. Kolmogoroff, C. R. (Dokl.) Acad. Sci. URSS 26 (n. Ser.), 115 (1940).
3.
B. Mandelbrot and J. Van Ness, SIAM Rev. 10, 422 (1968).
http://dx.doi.org/10.1137/1010093
4.
H. Scher and E. Montroll, Phys. Rev. B 12, 2455 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.2455
5.
Anomalous Transport: Foundations and Applications, edited by R. Klages, G. Radons, and I. Sokolov (Wiley-VCH Verlag, Weinheim, Germany, 2009).
6.
I. M. Sokolov, Soft Matter 8, 9043 (2012).
http://dx.doi.org/10.1039/c2sm25701g
7.
R. Metzler, J. H. Jeon, and A. G. Cherstvy, Phys. Chem. Chem. Phys. 16, 24128 (2014).
http://dx.doi.org/10.1039/C4CP03465A
8.
J. H. P. Schulz, E. Barkai, and R. Metzler, Phys. Rev. X 4, 011028 (2014).
http://dx.doi.org/10.1103/physrevx.4.011028
9.
G. R. Kneller, J. Chem. Phys. 134, 224106 (2011).
http://dx.doi.org/10.1063/1.3598483
10.
R. Zwanzig, “Statistical mechanics of irreversibility,” in Lectures in Theoretical Physics (John Wiley, New York, 1961), pp. 139172.
11.
R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001).
12.
J.-P. Hansen and I. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, 1986).
13.
A. Rahman, K. Singwi, and A. Sjölander, Phys. Rev. 126, 986 (1962).
http://dx.doi.org/10.1103/PhysRev.126.986
14.
L. Van Hove, Phys. Rev. 95, 249 (1954).
http://dx.doi.org/10.1103/PhysRev.95.249
15.
M. Bée, Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science (Adam Hilger, Bristol, 1988).
16.
J. Boon and S. Yip, Molecular Hydrodynamics (McGraw Hill, New York, 1980).
17.
J. Karamata, J. Reine Angew. Math. (Crelle’s J.) 1931, 27.
18.
G. R. Kneller, K. Baczynski, and M. Pasenkiewicz-Gierula, J. Chem. Phys. 135, 141105 (2011).
http://dx.doi.org/10.1063/1.3651800
19.
G. Wick, Phys. Rev. 94, 1228 (1954).
http://dx.doi.org/10.1103/PhysRev.94.1228
20.
H. Frauenfelder, P. W. Fenimore, and R. D. Young, Proc. Natl. Acad. Sci. U. S. A. 111, 12764 (2014).
http://dx.doi.org/10.1073/pnas.1411781111
21.
G. R. Kneller, in Complex Dynamics and Stochastic Systems, edited by P. F. Gora, E. Gudowska-Nowak, and F. A. Olivera (Acta Physica Polonica B, 2015), pp. 11671200.
22.
G. R. Kneller, Phys. Chem. Chem. Phys. 7, 2641 (2005).
http://dx.doi.org/10.1039/b502040a
23.
V. Calandrini, V. Hamon, K. Hinsen, P. Calligari, M. C. Bellissent-Funel, and G. R. Kneller, Chem. Phys. 345, 289 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.07.018
24.
NIST Handbook of Mathematical Functions, edited by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge University Press, 2010).
25.
Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, Illinois, USA, 2014.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/4/10.1063/1.4959124
Loading
/content/aip/journal/jcp/145/4/10.1063/1.4959124
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/4/10.1063/1.4959124
2016-07-25
2016-12-09

Abstract

The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝ , with 0 ≤ < 2. Confined diffusion ( = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constant can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/4/1.4959124.html;jsessionid=6W5dfWJ-3sc5kH0Gc2YLMfAs.x-aip-live-06?itemId=/content/aip/journal/jcp/145/4/10.1063/1.4959124&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/4/10.1063/1.4959124&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/4/10.1063/1.4959124'
Right1,Right2,Right3,