Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. E. Lovelock, Biochim. Biophys. Acta 11, 28 (1953).
J. E. Lovelock and M. W. H. Bishop, Nature 183, 1394 (1959).
T. J. Anchordoguy, A. S. Rudolph, J. F. Carpenter, and J. H. Crowe, Cryobiology 24, 324 (1987).
L. E. McGann, Cryobiology 15, 382 (1978).
W. K. Surewicz, Chem. Phys. Lipids 34, 363 (1984).
D. Pribor, Cryobiology 12, 309 (1975).
I. J. Bickis, K. Kazaks, J. J. Finn, and I. W. D. Henderson, Cryobiology 4, 1 (1967).
C. Malardier-Jugroot, D. T. Bowron, A. K. Soper, M. E. Johnson, and T. Head-Gordon, Phys. Chem. Chem. Phys. 12, 382 (2010).
D. Russo, Chem. Phys. 345, 200 (2008).
A. K. Soper and A. Luzar, J. Chem. Phys. 97, 1320 (1992).
A. K. Soper, I. Facility, and D. Ox, J. Phys. Chem. 100, 1357 (1996).
J. T. Cabral, A. Luzar, J. Teixeira, and M.-C. Bellissent-Funel, J. Chem. Phys. 113, 8736 (2000).
A. Puzenko, Y. Hayashi, Y. E. Ryabov, I. Balin, Y. Feldman, U. Kaatze, and R. Behrends, J. Phys. Chem. B 109, 6031 (2005).
J. L. Dashnau, N. V Nucci, K. A. Sharp, and J. M. Vanderkooi, J. Phys. Chem. B 110, 13670 (2006).
A. Luzar and D. Chandler, J. Chem. Phys. 98, 8160 (1993).
C. Chen, W. Z. Li, Y. C. Song, and J. Yang, J. Mol. Struct.: THEOCHEM 916, 37 (2009).
R. N. Havemeyer, J. Pharm. Sci. 55, 851 (1966).
L. B. Lane, Ind. Eng. Chem. 17, 924 (1925).
R. G. LeBel and D. A. I. Goring, J. Chem. Eng. Data 7, 100 (1962).
N. Cheng, Ind. Eng. Chem. Res. 47, 3285 (2008).
J. E. Gorshkova and V. I. Gordeliy, Crystallogr. Rep. 52, 535 (2007).
M. A. Kiselev, P. Lesieur, A. M. Kisselev, C. Grabielle-Madelmond, and M. Ollivon, J. Alloys Compd. 286, 195 (1999).
V. I. Gordeliy, M. A. Kiselev, P. Lesieur, A. V. Pole, and J. Teixeira, Biophys. J. 75, 2343 (1998).
R. V. McDaniel, T. J. McIntosh, and S. A. Simon, Biochim. Biophys. Acta 731, 97 (1983).
Z. W. Yu and P. J. Quinn, Biophys. J. 69, 1456 (1995).
A. M. Schrader, S. H. Donaldson, J. Song, C.-Y. Cheng, D. W. Lee, S. Han, and J. N. Israelachvili, Proc. Natl. Acad. Sci. U. S. A. 112, 10708 (2015).
C. Cheng, J. Song, J. Pas, L. Meijer, and S. Han, Biophys. J. 109, 330 (2015).
S. N. Shashkov, M. A. Kiselev, S. N. Tioutiounnikov, A. M. Kiselev, and P. Lesieur, Phys. B: Condens. Matter 271, 184 (1999).
A. P. Dabkowska, L. E. Collins, D. J. Barlow, R. Barker, S. E. McLain, M. J. Lawrence, and C. D. Lorenz, Langmuir 30, 8803 (2014).
P. Westh, Biophys. J. 84, 341 (2003).
C. J. Malajczuk, Z. E. Hughes, and R. L. Mancera, Biochim. Biophys. Acta 1828, 2041 (2013).
See supplementary material at for the extended EPR and ODNP protocols and results, and calculations of the theoretical Hamaker constant.[Supplementary Material]
J. N. Israelachvili, Y. Min, M. Akbulut, A. Alig, G. Carver, W. Greene, K. Kristiansen, E. Meyer, N. Pesika, K. Rosenberg, and H. Zeng, Rep. Prog. Phys. 73, 1 (2010).
J. M. Franck, A. Pavlova, J. A. Scott, and S. Han, Prog. Nucl. Magn. Reson. Spectrosc. 74, 33 (2013).
R. Sinibaldi, M. G. Ortore, F. Spinozzi, F. Carsughi, H. Frielinghaus, S. Cinelli, G. Onori, and P. Mariani, J. Chem. Phys. 126, 235101 (2007).
A. Paciaroni, S. Cinelli, and G. Onori, Biophys. J. 83, 1157 (2002).
K. Gekko and S. N. Timasheff, Biochemistry 20, 4667 (1981).
A. V. Egorov, A. P. Lyubartsev, and A. Laaksonen, J. Phys. Chem. B 115, 14572 (2011).

Data & Media loading...


Article metrics loading...



Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd