Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
B. Croft, U. Lohmann, R. V. Martin, P. Stier, S. Wurzler, J. Feichter, R. Posselt, and S. Ferrachat, Atmos. Chem. Phys. 9, 4653 (2009).
K. Ardon-Dryer, Y. W. Huang, and D. J. Cziczo, Atmos. Chem. Phys. 15, 9159 (2015).
E. S. Robinson, R. Saleh, and N. M. Donahue, J. Phys. Chem. A 117, 13935 (2013).
J. R. Starr and B. J. Mason, Q. J. R. Meteorol. Soc. 92, 490 (1966).
G. D. Martin, S. D. Hoath, and I. M. Hutchings, J. Phys.: Conf. Ser. 105, 012001 (2008).
R. Vehring, W. R. Foss, and D. Lechuga-Ballesteros, J. Aerosol Sci. 38, 728 (2007).
J. W. Ivey, R. Vehring, and W. H. Finlay, Expert Opin. Drug Delivery 12, 901 (2015).
B. R. Bzdek, R. M. Power, S. H. Simpson, J. P. Reid, and C. P. Royall, Chem. Sci. 7, 274 (2016).
Y. Tian, R. G. Holt, and R. E. Apfel, Rev. Sci. Instrum. 66, 3349 (1995).
L. Yang, B. K. Kazmierski, S. D. Hoath, S. Jung, W.-K. Hsiao, Y. Wang, A. Berson, O. Harlen, N. Kapur, and C. D. Bain, Phys. Fluids 26, 113103 (2014).
R. M. Power, S. H. Simpson, J. P. Reid, and A. J. Hudson, Chem. Sci. 4, 2597 (2013).
E. Bichoutskaia, A. L. Boatwright, A. Khachatourian, and A. J. Stace, J. Chem. Phys. 133, 024105 (2010).
R. M. Power, D. R. Burnham, and J. P. Reid, Appl. Opt. 53, 8522 (2014).
Y. Qiu and V. Molinero, J. Am. Chem. Soc. 137, 10642 (2015).
H. Pathak, A. Obeidat, G. Wilemski, and B. Wyslouzil, J. Chem. Phys. 140, 224318 (2014).
J. E. Sprittles and Y. D. Shikhmurzaev, Phys. Fluids 24, 122105 (2012).
D. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, Phys. Rev. Lett. 95, 164503 (2005).
Y. Chen, C. Shen, and G. P. Peterson, Ind. Eng. Chem. Res. 54, 9257 (2015).
M. M. Wu, T. Cubaud, and C. M. Ho, Phys. Fluids 16, L51 (2004).
S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, Nature 384, 335 (1996).
K. Fezzaa and Y. Wang, Phys. Rev. Lett. 100, 104501 (2008).
S. C. Case, Phys. Rev. E 79, 026307 (2009).
S. C. Case and S. R. Nagel, Phys. Rev. Lett. 100, 084503 (2008).
J. D. Paulsen, J. C. Burton, and S. R. Nagel, Phys. Rev. Lett. 106, 114501 (2011).
J.-Y. Kohno, M. Kobayashi, and T. Suzuki, Chem. Phys. Lett. 578, 15 (2013).
Y. Takano, S. Kikkawa, T. Suzuki, and J.-Y. Kohno, J. Phys. Chem. B 119, 7062 (2015).
T. Suzuki and J.-Y. Kohno, J. Phys. Chem. B 118, 5781 (2014).
R. M. Power and J. P. Reid, Rep. Prog. Phys. 77, 074601 (2014).
J. Buajarern, L. Mitchem, A. D. Ward, N. H. Nahler, D. McGloin, and J. P. Reid, J. Chem. Phys. 125, 114506 (2006).
J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, Lab Chip 9, 521 (2009).
L. Mitchem, J. Buajarern, A. D. Ward, and J. P. Reid, J. Phys. Chem. B 110, 13700 (2006).
L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, Chem. Phys. Lett. 432, 362 (2006).
J. B. Wills, J. R. Butler, J. Palmer, and J. P. Reid, Phys. Chem. Chem. Phys. 11, 8015 (2009).
J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, J. Phys. Chem. A 116, 8873 (2012).
J. E. Sprittles and Y. D. Shikhmurzaev, J. Fluid Mech. 751, 480 (2014).
J. E. Sprittles and Y. D. Shikhmurzaev, Phys. Rev. E 89, 063008 (2014).
J. E. Sprittles and Y. D. Shikhmurzaev, J. Fluid Mech. 753, 279 (2014).
R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, and E. N. Wang, ACS Nano 8, 10352 (2014).
J. E. Sprittles and Y. D. Shikhmurzaev, Int. J. Numer. Methods Fluids 68, 1257 (2012).
H. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, Cambridge, 1932).
L. Rayleigh, Proc. R. Soc. London 29, 71 (1879).
J. Buajarern, L. Mitchem, and J. P. Reid, J. Phys. Chem. A 111, 13038 (2007).
K. J. Knox, D. R. Burnham, L. I. McCann, S. L. Murphy, D. McGloin, and J. P. Reid, J. Opt. Soc. Am. B 27, 582 (2010).
B. M. Weon and J. H. Je, Phys. Rev. Lett. 108, 224501 (2012).
A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, Chem. Commun. 2006, 4515.
See supplementary material at for supplementary videos 1 and 2, which show simulations of binary coalescence from two orthogonal perspectives.[Supplementary Material]
S. Chandrasekhar, Proc. London Math. Soc. 3-9, 141 (1959).
A. Marabi, G. Mayor, A. Burbidge, R. Wallach, and I. S. Saguy, Chem. Eng. J 139, 118 (2008).
A. van Kampen, B. Hitzmann, and R. Kohlus, Powder Technol. 286, 325 (2015).
A. Asa-Awuku and A. Nenes, J. Geophys. Res.: Atmos. 112, D22201, doi:10.1029/2005JD006934 (2007).
B. J. Dennis-Smither, K. L. Hanford, N.-O. A. Kwamena, R. E. H. Miles, and J. P. Reid, J. Phys. Chem. A 116, 6159 (2012).
N. O. A. Kwamena, J. Buajarern, and J. P. Reid, J. Phys. Chem. A 114, 5787 (2010).
J. P. Reid, B. J. Dennis-Smither, N.-O. A. Kwamena, R. E. H. Miles, K. L. Hanford, and C. J. Homer, Phys. Chem. Chem. Phys. 13, 15559 (2011).

Data & Media loading...


Article metrics loading...



We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 s). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd