Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem. 83, 1619 (2011).
A. K. Samanta, Y. Wang, J. S. Mancini, J. M. Bowman, and H. Reisler, Chem. Rev. 116, 4913 (2016).
A. G. Slater, L. M. Perdigao, P. H. Beton, and N. R. Champness, Acc. Chem. Res. 47, 3417 (2014).
J. DeChancie and K. N. Houk, J. Am. Chem. Soc. 129, 5419 (2007).
J. O. Richardson, C. Perez, S. Lobsiger, A. A. Reid, B. Temelso, G. C. Shields, Z. Kisiel, D. J. Wales, B. H. Pate, and S. C. Althorpe, Science 351, 1310 (2016).
Q. Gu, C. Trindle, and J. L. Knee, J. Chem. Phys. 137, 091101 (2012).
D. K. Havey, K. J. Feierabend, and V. Vaida, J. Phys. Chem. A 108, 9069 (2004).
D. K. Havey, K. J. Feierabend, K. Takahashi, R. T. Skodje, and V. Vaida, J. Phys. Chem. A 110, 6439 (2006).
A. Halasa, L. Lapinski, I. Reva, H. Rostkowska, R. Fausto, and M. J. Nowak, J. Phys. Chem. A 118, 5626 (2014).
Q. Gu and J. L. Knee, J. Chem. Phys. 136, 171101 (2012).
Z. Yang, Q. Gu, C. Trindle, and J. L. Knee, J. Chem. Phys. 139, 151101 (2013).
J. M. Smith, C. Lakshminarayan, and J. L. Knee, J. Chem. Phys. 93, 4475 (1990).
M. J. Frisch et al., gaussian09, Revision A.01, Gaussian, Inc., Wallingford, CT,2009.
K. Tanabe, M. Miyazaki, M. Schmies, A. Patzer, M. Schutz, H. Sekiya, M. Sakai, O. Dopfer, and M. Fujii, Angew. Chem., Int. Ed. 51, 6604 (2012).
N. S. Nagornova, T. R. Rizzo, and O. V. Boyarkin, Science 336, 320 (2012).
D. P. Tabor, R. Kusaka, P. S. Walsh, E. L. Sibert, and T. S. Zwier, J. Phys. Chem. Lett. 6, 1989 (2015).
G. M. Florio, T. S. Zwier, E. M. Myshakin, J. D. Jordan, and E. L. Sibert, J. Chem. Phys. 118, 1735 (2003).
L. C. Zhu and P. Johnson, J. Chem. Phys. 94, 5769 (1991).
O. Dopfer, G. Reiser, K. Muller-Dethlefs, E. W. Schlag, and S. D. Colson, J. Chem. Phys. 101, 974 (1994).
J. E. Braun and H. J. Neusser, Mass Spectrom. Rev. 21, 16 (2002).
P. Su, Z. Jiang, Z. Chen, and W. Wu, J. Phys. Chem. A 118, 2531 (2014).
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
R. Z. Khaliullin, A. T. Bell, and M. Head-Gordon, Chem. - Eur. J. 15, 851 (2009).
P. R. Horn and M. Head-Gordon, J. Chem. Phys. 144, 084118 (2016).
X. Chang, Y. Zhang, X. Weng, P. Su, W. Wu, and Y. Mo, J. Phys. Chem. A 120, 2749 (2016).
S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth, Chem. Rev. 116, 5105 (2016).

Data & Media loading...


Article metrics loading...



The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA—HO, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA—HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd