Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 66066622 (2001).
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
M. Khalil, N. Demirdöven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003).
P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: A platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett. 3, 11821190 (2012).
S. Mukamel, R. Oszwałdowski, and L. Yang, “A coherent nonlinear optical signal induced by electron correlations,” J. Chem. Phys. 127, 221105 (2007).
E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, “Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 94, 067402 (2005).
K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 11691173 (2009).
K. W. Stone, D. B. Turner, K. Gundogdu, S. T. Cundiff, and K. A. Nelson, “Exciton-exciton correlations revealed by two-quantum, two-dimensional Fourier transform optical spectroscopy,” Acc. Chem. Res. 42, 14521461 (2009).
D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42, 14231432 (2009).
D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089 (2010).
D. B. Turner, P. Wen, D. H. Arias, and K. A. Nelson, “Coherent two-exciton dynamics measured using two-quantum rephasing two-dimensional electronic spectroscopy,” Phys. Rev. B 84, 165321 (2011).
J. O. Tollerud and J. A. Davis, “Two-dimensional double-quantum spectroscopy: Peak shapes as a sensitive probe of carrier interactions in quantum wells,” J. Opt. Soc. Am. B 33, C108C114 (2016).
X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 33013303 (2009).
A. Nemeth, F. Milota, T. Mancal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: Experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. F. Kauffmann, and J. Hauer, “Electronic double-quantum coherences and their impact on ultrafast spectroscopy: The example ofβ-carotene,” J. Phys. Chem. Lett. 1, 33663370 (2010).
P. E. Konold and R. Jimenez, “Excited state electronic landscape of mPlum revealed by two-dimensional double quantum coherence spectroscopy,” J. Phys. Chem. B 119, 34143422 (2015).
A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85, 123107 (2014).
U. Selig, F. Langhojer, F. Dimler, T. Lohrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 28512853 (2008).
V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 97649779 (2009).
I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143, 164203 (2015).
S. Wilson, Electron Correlation in Molecules (Claredon Press, Oxford, 1984).
R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
M. K. Yetzbacher, N. Belabus, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: Enhancement of sensitivity and noise resistance,” Opt. Express 19, 1312613133 (2011).
J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86, 053106 (2015).
L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for application in spectroscopy,” J. Opt. Soc. Am. B 12, 24672474 (1995).
K. Raghavachari and J. B. Anderson, “Electron correlation effects in molecules,” J. Phys. Chem. 100, 1296012973 (1996).
A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines—A view on two-dimensional optical spectroscopy,” Ann. Phys. 526, 3149 (2013).
J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42, 13751384 (2009).
J. Kim, V. M. Huxter, C. Curutchet, and G. D. Scholes, “Measurement of electron-electron interactions and correlations using two-dimensional electronic double-quantum coherence spectroscopy,” J. Phys. Chem. A 113, 1212212133 (2009).
R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2003).
S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006).
R. Singh, T. M. Autry, G. Nardin, G. Moody, H. Li, K. Pierz, M. Bieler, and S. T. Cundiff, “Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells,” Phys. Rev. B 88, 045304 (2013).
M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 52585279 (2003).
J. Brazard, L. A. Bizimana, T. Gellen, W. P. Carbery, and D. B. Turner, “Experimental detection of branching at a conical intersection in a highly fluorescent molecule,” J. Phys. Chem. Lett. 7, 1419 (2016).
U. Brackmann, Lambdachrome Laser Dyes (Lambda Physik, 1997).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.
K. A. Velizhanin and A. Piryatinski, “Probing interband Coulomb interactions in semiconductor nanostructures with 2D double-quantum coherence spectroscopy,” J. Phys. Chem. B 115, 53725382 (2011).

Data & Media loading...


Article metrics loading...



A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree–Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd