Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
C. M. Dobson, Nature 426, 884890 (2003).
S. Granick and S. C. Bae, Science 322, 14771478 (2008).
Y.-T. Cheng and D. E. Rodak, Appl. Phys. Lett. 86, 144101 (2005).
S. Huang, M. Bai, and L. Wang, Sci. Rep. 3, 2023 (2013).
R. Blossey, Nat. Mater. 2, 301306 (2003).
A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, and O. Bakajin, Nano Today 2, 2229 (2007).
R. Godawat, S. N. Jamadagni, and S. Garde, Proc. Natl. Acad. Sci. U. S. A. 106, 1511915124 (2009).
T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Proc. Natl. Acad. Sci. U. S. A. 108, 1617016175 (2011).
C. Zhu, H. Li, Y. Huang, X. C. Zeng, and S. Meng, Phys. Rev. Lett. 110, 126101 (2013).
A. P. Willard and D. Chandler, J. Chem. Phys. 141, 18C519 (2014).
N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, J. Phys. Chem. B 113, 1372313734 (2009).
L. Lupi, N. Kastelowitz, and V. Molinero, J. Chem. Phys. 141, 18C508 (2014).
J. Driskill, D. Vanzo, D. Bratko, and A. Luzar, J. Chem. Phys. 141, 18C517 (2014).
S. Jung, M. K. Tiwari, N. V. Doan, and D. Poulikakos, Nat. Commun. 3, 615 (2012).
C. D. Daub, D. Bratko, and A. Luzar, Multiscale Molecular Methods in Applied Chemistry (Springer, Heidelberg, 2012), pp. 155179.
N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phys. Rev. E 73, 041604 (2006).
V. Hejazi, K. Sobolev, and M. Nosonovsky, Sci. Rep. 3, 2194 (2013).
S. Jung, M. Dorrestijn, D. Raps, A. Das, C. M. Megaridis, and D. Poulikakos, Langmuir 27, 30593066 (2011).
M. Nosonovsky and V. Hejazi, ACS Nano 6, 84888491 (2012).
S. Iijima and T. Ichihashi, Nature 363, 603605 (1993).
D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363, 605607 (1993).
K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Nature 412, 802805 (2001).
J. Shiomi, T. Kimura, and S. Maruyama, J. Phys. Chem. C 111, 1218812193 (2007).
D. Takaiwa, I. Hatano, K. Koga, and H. Tanaka, Proc. Natl. Acad. Sci. U. S. A. 105, 3943 (2008).
J. Bai, J. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. U. S. A 103, 1966419667 (2006).
H. Kyakuno, K. Matsuda, H. Yahiro, Y. Inami, T. Fukuoka, Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, T. Saito, M. Yumura, and S. Iijima, J. Chem. Phys. 134, 244501 (2011).
Y. Maniwa, H. Kataura, M. Abe, S. Suzuki, Y. Achiba, H. Kira, and K. Matsuda, J. Phys. Soc. Jpn. 71, 28632866 (2002).
Y. Maniwa, H. Kataura, M. Abe, U. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Chem. Phys. Lett. 401, 534538 (2005).
A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004).
O. Byl, J.-C. Liu, Y. Wang, W.-L. Yim, J. K. Johnson, and J. T. Yates, Jr., J. Am. Chem. Soc. 128, 1209012097 (2006).
Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, and H. Kataura, Nat. Mater. 6, 135141 (2007).
F. Mikami, K. Matsuda, H. Kataura, and Y. Maniwa, ACS Nano 3, 12791287 (2009).
T. Saito, W.-C. Xu, S. Ohshima, H. Ago, M. Yumura, and S. Iijima, J. Phys. Chem. B 110, 58495853 (2006).
T. Saito, S. Ohshima, T. Okazaki, S. Ohmori, M. Yumura, and S. Iijima, J. Nanosci. Nanotechnol. 8, 61536157 (2008).
A. Thess, R. Lee, P. Nikolaev, H. Dai, H. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science 273, 483487 (1996).
Y. Maniwa, Y. Kumazawa, Y. Saito, H. Tou, H. Kataura, H. Ishii, S. Suzuki, Y. Achiba, A. Fujiwara, and H. Suematsu, Jpn. J. Appl. Phys., Part 2 38, L668 (1999).
H. Kadowaki, A. Nishiyama, K. Matsuda, Y. Maniwa, S. Suzuki, Y. Achiba, and H. Kataura, J. Phys. Soc. Jpn. 74, 2990 (2005).
E. Paineau, P.-A. Albouy, S. Rouzière, A. Orecchini, S. Rols, and P. Launois, Nano Lett. 13, 17511756 (2013).
E. C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons Inc., USA, 2005).
R. Mitsuyama, S. Tadera, H. Kyakuno, R. Suzuki, H. Ishii, Y. Nakai, Y. Miyata, K. Yanagi, H. Kataura, and Y. Maniwa, Carbon 75, 299306 (2014).
H. Kyakuno, K. Matsuda, Y. Nakai, T. Fukuoka, Y. Maniwa, H. Nishihara, and T. Kyotani, Chem. Phys. Lett. 571, 5460 (2013).
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 62696271 (1987).
S. W. Rick, J. Chem. Phys. 120, 6085 (2004).
Using TIP5P-Ew water model, the calculations of meniscus of water inside SWCNTs were performed. In a 2.400-nm SWCNT the contact angles were θ ∼ 90 at 200 K and θ ∼ 70 at 280 K. On the other hand, in a 1.220-nm SWCNT a tubule-like water distribution was observed even at 280 K and a hexagonal ice nanotube clearly formed at least below 260 K.
L. Bosio, G. P. Johari, and J. Teixeira, Phys. Rev. Lett. 56, 460463 (1986).
R. Zangi, J. Phys.: Condens. Matter 16, S5371S5388 (2004).
C. E. Bertrand, Y. Zhang, and S.-H. Chen, Phys. Chem. Chem. Phys. 15, 721745 (2013).
C. U. Kim, B. Barstow, M. W. Tate, and S. M. Gruner, Proc. Natl. Acad. Sci. U. S. A. 106, 45964600 (2009).
T. A. Pascal, W. A. Goddard, and Y. Jun, Proc. Natl. Acad. Sci. U. S. A. 108, 1179411798 (2011).
W. Thomson, Philos. Mag. Ser. 4 42, 448452 (1871).
M. H. Factorovich, V. Molinero, and D. A. Scherlis, J. Am. Chem. Soc. 136, 45084514 (2014).
K. Hanami, T. Umesaki, K. Matsuda, Y. Miyata, H. Kataura, Y. Okabe, and Y. Maniwa, J. Phys. Soc. Jpn. 79, 023601 (2010).
The value for U0/R ≈ 100 K is an average value around the center of the 2.034-nm SWCNT in Fig. 3 of Ref. 52, where the potential of an oxygen atom was presented. In the present 2.400-nm SWCNT, U0/R ≈ 60 K was obtained for the SPC/E water at the center of the SWCNT.
D. M. Murphy and T. Koop, Q. J. R. Meteorol. Soc. 131, 15391565 (2005).

Data & Media loading...


Article metrics loading...



Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature and the SWCNT diameter . SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature ≈ 220-230 K and above a critical diameter ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs ( > ) evaporate and condense into ice Ih outside the SWCNTs at upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below freezes. Molecular dynamics simulations indicate that upon lowering , the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs ( < ) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd