Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/6/10.1063/1.4960609
1.
C. M. Dobson, Nature 426, 884890 (2003).
http://dx.doi.org/10.1038/nature02261
2.
S. Granick and S. C. Bae, Science 322, 14771478 (2008).
http://dx.doi.org/10.1126/science.1167219
3.
Y.-T. Cheng and D. E. Rodak, Appl. Phys. Lett. 86, 144101 (2005).
http://dx.doi.org/10.1063/1.1895487
4.
S. Huang, M. Bai, and L. Wang, Sci. Rep. 3, 2023 (2013).
http://dx.doi.org/10.1038/srep02023
5.
R. Blossey, Nat. Mater. 2, 301306 (2003).
http://dx.doi.org/10.1038/nmat856
6.
A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, and O. Bakajin, Nano Today 2, 2229 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70170-6
7.
R. Godawat, S. N. Jamadagni, and S. Garde, Proc. Natl. Acad. Sci. U. S. A. 106, 1511915124 (2009).
http://dx.doi.org/10.1073/pnas.0902778106
8.
T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Proc. Natl. Acad. Sci. U. S. A. 108, 1617016175 (2011).
http://dx.doi.org/10.1073/pnas.1105189108
9.
C. Zhu, H. Li, Y. Huang, X. C. Zeng, and S. Meng, Phys. Rev. Lett. 110, 126101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.126101
10.
A. P. Willard and D. Chandler, J. Chem. Phys. 141, 18C519 (2014).
http://dx.doi.org/10.1063/1.4897249
11.
N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, J. Phys. Chem. B 113, 1372313734 (2009).
http://dx.doi.org/10.1021/jp9018266
12.
L. Lupi, N. Kastelowitz, and V. Molinero, J. Chem. Phys. 141, 18C508 (2014).
http://dx.doi.org/10.1063/1.4895543
13.
J. Driskill, D. Vanzo, D. Bratko, and A. Luzar, J. Chem. Phys. 141, 18C517 (2014).
http://dx.doi.org/10.1063/1.4895541
14.
S. Jung, M. K. Tiwari, N. V. Doan, and D. Poulikakos, Nat. Commun. 3, 615 (2012).
http://dx.doi.org/10.1038/ncomms1630
15.
C. D. Daub, D. Bratko, and A. Luzar, Multiscale Molecular Methods in Applied Chemistry (Springer, Heidelberg, 2012), pp. 155179.
16.
N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phys. Rev. E 73, 041604 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041604
17.
V. Hejazi, K. Sobolev, and M. Nosonovsky, Sci. Rep. 3, 2194 (2013).
http://dx.doi.org/10.1038/srep02194
18.
S. Jung, M. Dorrestijn, D. Raps, A. Das, C. M. Megaridis, and D. Poulikakos, Langmuir 27, 30593066 (2011).
http://dx.doi.org/10.1021/la104762g
19.
M. Nosonovsky and V. Hejazi, ACS Nano 6, 84888491 (2012).
http://dx.doi.org/10.1021/nn302138r
20.
S. Iijima and T. Ichihashi, Nature 363, 603605 (1993).
http://dx.doi.org/10.1038/363603a0
21.
D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363, 605607 (1993).
http://dx.doi.org/10.1038/363605a0
22.
K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Nature 412, 802805 (2001).
http://dx.doi.org/10.1038/35090532
23.
J. Shiomi, T. Kimura, and S. Maruyama, J. Phys. Chem. C 111, 1218812193 (2007).
http://dx.doi.org/10.1021/jp071508s
24.
D. Takaiwa, I. Hatano, K. Koga, and H. Tanaka, Proc. Natl. Acad. Sci. U. S. A. 105, 3943 (2008).
http://dx.doi.org/10.1073/pnas.0707917105
25.
J. Bai, J. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. U. S. A 103, 1966419667 (2006).
http://dx.doi.org/10.1073/pnas.0608401104
26.
H. Kyakuno, K. Matsuda, H. Yahiro, Y. Inami, T. Fukuoka, Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, T. Saito, M. Yumura, and S. Iijima, J. Chem. Phys. 134, 244501 (2011).
http://dx.doi.org/10.1063/1.3593064
27.
Y. Maniwa, H. Kataura, M. Abe, S. Suzuki, Y. Achiba, H. Kira, and K. Matsuda, J. Phys. Soc. Jpn. 71, 28632866 (2002).
http://dx.doi.org/10.1143/JPSJ.71.2863
28.
Y. Maniwa, H. Kataura, M. Abe, U. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Chem. Phys. Lett. 401, 534538 (2005).
http://dx.doi.org/10.1016/j.cplett.2004.11.112
29.
A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.035503
30.
O. Byl, J.-C. Liu, Y. Wang, W.-L. Yim, J. K. Johnson, and J. T. Yates, Jr., J. Am. Chem. Soc. 128, 1209012097 (2006).
http://dx.doi.org/10.1021/ja057856u
31.
Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, and H. Kataura, Nat. Mater. 6, 135141 (2007).
http://dx.doi.org/10.1038/nmat1823
32.
F. Mikami, K. Matsuda, H. Kataura, and Y. Maniwa, ACS Nano 3, 12791287 (2009).
http://dx.doi.org/10.1021/nn900221t
33.
T. Saito, W.-C. Xu, S. Ohshima, H. Ago, M. Yumura, and S. Iijima, J. Phys. Chem. B 110, 58495853 (2006).
http://dx.doi.org/10.1021/jp057513i
34.
T. Saito, S. Ohshima, T. Okazaki, S. Ohmori, M. Yumura, and S. Iijima, J. Nanosci. Nanotechnol. 8, 61536157 (2008).
http://dx.doi.org/10.1166/jnn.2008.SW23
35.
A. Thess, R. Lee, P. Nikolaev, H. Dai, H. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science 273, 483487 (1996).
http://dx.doi.org/10.1126/science.273.5274.483
36.
Y. Maniwa, Y. Kumazawa, Y. Saito, H. Tou, H. Kataura, H. Ishii, S. Suzuki, Y. Achiba, A. Fujiwara, and H. Suematsu, Jpn. J. Appl. Phys., Part 2 38, L668 (1999).
http://dx.doi.org/10.1143/JJAP.38.L668
37.
H. Kadowaki, A. Nishiyama, K. Matsuda, Y. Maniwa, S. Suzuki, Y. Achiba, and H. Kataura, J. Phys. Soc. Jpn. 74, 2990 (2005).
http://dx.doi.org/10.1143/JPSJ.74.2990
38.
E. Paineau, P.-A. Albouy, S. Rouzière, A. Orecchini, S. Rols, and P. Launois, Nano Lett. 13, 17511756 (2013).
http://dx.doi.org/10.1021/nl400331p
39.
E. C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons Inc., USA, 2005).
40.
R. Mitsuyama, S. Tadera, H. Kyakuno, R. Suzuki, H. Ishii, Y. Nakai, Y. Miyata, K. Yanagi, H. Kataura, and Y. Maniwa, Carbon 75, 299306 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.04.006
41.
H. Kyakuno, K. Matsuda, Y. Nakai, T. Fukuoka, Y. Maniwa, H. Nishihara, and T. Kyotani, Chem. Phys. Lett. 571, 5460 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.04.016
42.
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 62696271 (1987).
http://dx.doi.org/10.1021/j100308a038
43.
S. W. Rick, J. Chem. Phys. 120, 6085 (2004).
http://dx.doi.org/10.1063/1.1652434
44.
Using TIP5P-Ew water model, the calculations of meniscus of water inside SWCNTs were performed. In a 2.400-nm SWCNT the contact angles were θ ∼ 90 at 200 K and θ ∼ 70 at 280 K. On the other hand, in a 1.220-nm SWCNT a tubule-like water distribution was observed even at 280 K and a hexagonal ice nanotube clearly formed at least below 260 K.
45.
L. Bosio, G. P. Johari, and J. Teixeira, Phys. Rev. Lett. 56, 460463 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.460
46.
R. Zangi, J. Phys.: Condens. Matter 16, S5371S5388 (2004).
http://dx.doi.org/10.1088/0953-8984/16/45/005
47.
C. E. Bertrand, Y. Zhang, and S.-H. Chen, Phys. Chem. Chem. Phys. 15, 721745 (2013).
http://dx.doi.org/10.1039/C2CP43235H
48.
C. U. Kim, B. Barstow, M. W. Tate, and S. M. Gruner, Proc. Natl. Acad. Sci. U. S. A. 106, 45964600 (2009).
http://dx.doi.org/10.1073/pnas.0812481106
49.
T. A. Pascal, W. A. Goddard, and Y. Jun, Proc. Natl. Acad. Sci. U. S. A. 108, 1179411798 (2011).
http://dx.doi.org/10.1073/pnas.1108073108
50.
W. Thomson, Philos. Mag. Ser. 4 42, 448452 (1871).
51.
M. H. Factorovich, V. Molinero, and D. A. Scherlis, J. Am. Chem. Soc. 136, 45084514 (2014).
http://dx.doi.org/10.1021/ja405408n
52.
K. Hanami, T. Umesaki, K. Matsuda, Y. Miyata, H. Kataura, Y. Okabe, and Y. Maniwa, J. Phys. Soc. Jpn. 79, 023601 (2010).
http://dx.doi.org/10.1143/JPSJ.79.023601
53.
The value for U0/R ≈ 100 K is an average value around the center of the 2.034-nm SWCNT in Fig. 3 of Ref. 52, where the potential of an oxygen atom was presented. In the present 2.400-nm SWCNT, U0/R ≈ 60 K was obtained for the SPC/E water at the center of the SWCNT.
54.
D. M. Murphy and T. Koop, Q. J. R. Meteorol. Soc. 131, 15391565 (2005).
http://dx.doi.org/10.1256/qj.04.94
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/6/10.1063/1.4960609
Loading
/content/aip/journal/jcp/145/6/10.1063/1.4960609
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/6/10.1063/1.4960609
2016-08-12
2016-12-04

Abstract

Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature and the SWCNT diameter . SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature ≈ 220-230 K and above a critical diameter ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs ( > ) evaporate and condense into ice Ih outside the SWCNTs at upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below freezes. Molecular dynamics simulations indicate that upon lowering , the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs ( < ) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/6/1.4960609.html;jsessionid=XXo0ybFlB3cOPBoYPwAoExAl.x-aip-live-02?itemId=/content/aip/journal/jcp/145/6/10.1063/1.4960609&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/6/10.1063/1.4960609&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/6/10.1063/1.4960609'
Right1,Right2,Right3,