Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/7/10.1063/1.4960790
1.
G. Mills and H. Jonsson, Phys. Rev. Lett. 72, 1124 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1124
2.
G. Mills, H. Jonsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00731-4
3.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
4.
B. Uuberuaga, M. Leskovar, A. P. Smith, H. Jonsson, and M. Olmstead, Phys. Rev. Lett. 84, 2441 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2441
5.
D. Nguyen-Manh, A. P. Horsfield, and S. L. Dudarev, Phys. Rev. B 73, 02101 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.020101
6.
S. Linic, J. Jankowiak, and M. A. Barteau, J. Catal. 224, 489493 (2004).
http://dx.doi.org/10.1016/j.jcat.2004.03.007
7.
M. Villarba and H. Jonsson, Surf. Sci. 317, 15 (1994).
http://dx.doi.org/10.1016/0039-6028(94)90249-6
8.
M. Villarba and H. Jonsson, Surf. Sci. 324, 35 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00631-8
9.
M. R. Sorensen, K. W. Jacobsen, and H. Jonsson, Phys. Rev. Lett. 77, 5067 (1996).
http://dx.doi.org/10.1103/physrevlett.77.5067
10.
A. F. Voter and J. D. Doll, J. Chem. Phys. 80, 5832 (1984).
http://dx.doi.org/10.1063/1.446610
11.
G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 99789985 (2000).
http://dx.doi.org/10.1063/1.1323224
12.
L. Xie, H. Liu, and W. Yang, J. Chem. Phys. 120(17), 8039 (2014).
http://dx.doi.org/10.1063/1.1691404
13.
H. Hu and W. Yang, Annu. Rev. Phys. Chem. 59, 573601 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093618
14.
T. Angsten, T. Mayeshiba, H. Wu, and D. Morgan, New J. Phys. 16, 015018 (2014).
http://dx.doi.org/10.1088/1367-2630/16/1/015018
15.
D. N. Manh, A. P. Horsfield, and S. L. Dudarev, Phys. Rev. B 73, 020101 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.020101
16.
P. Erhart and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).
http://dx.doi.org/10.1063/1.2206559
17.
S. P. Ong, V. L. Chevrier et al., Energy Environ. Sci. 4, 36803688 (2011).
http://dx.doi.org/10.1039/c1ee01782a
18.
Y. Mo, S. P. Ong, and G. Ceder, Chem. Mater. 26, 52085214 (2014).
http://dx.doi.org/10.1021/cm501563f
19.
G. K. P. Dathar, D. Sheppard, K. J. Stevenson, and G. Henkelman, Chem. Mater. 23, 40324937 (2011).
http://dx.doi.org/10.1021/cm201604g
20.
T. Song, H. Cheng et al., ACS Nano 6, 303309 (2012).
http://dx.doi.org/10.1021/nn203572n
21.
K. S. Park, P. Xiao, S. Y. Kim, A. Dylla, Y. M. Choi, G. Henkelman, K. J. Stevenson, and J. B. Goodenough, Chem. Mater. 24, 32123218 (2012).
http://dx.doi.org/10.1021/cm301569m
22.
D. A. Tompsett and M. S. Islam, Chem. Mater. 25, 25152526 (2013).
http://dx.doi.org/10.1021/cm400864n
23.
M. Liu, Z. Rong, R. Malik, P. Canepa, A. Jain, G. Ceder, and K. Persson, Energy Environ. Sci. 8(3), 964974 (2014).
http://dx.doi.org/10.1021/acs.chemmater.5b02342
24.
Z. Rong, R. Malik, P. Canepa, G. S. Gautam, M. Liu, A. Jain, K. Persson, and G. Ceder, Chem. Mater. 27(17), 60166021 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b02342
25.
G. S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson, and G. Ceder, Chem. Commun. 51, 13619 (2015).
http://dx.doi.org/10.1039/c5cc04947d
26.
G. S. Gautam, P. Canepa, A. Abdellahi, A. Urban, R. Malik, and G. Ceder, Chem. Mater. 27(10), 37333742 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00957
27.
Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, and G. Ceder, Nat. Mater. 14, 10261031 (2015).
http://dx.doi.org/10.1038/nmat4369
28.
F. Du, X. Ren, J. Yang, J. Liu, and W. Zhang, J. Phys. Chem. C 118(20), 1059010595 (2014).
http://dx.doi.org/10.1021/jp5000039
29.
G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 99019904 (2000).
http://dx.doi.org/10.1063/1.1329672
30.
P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman, and E. Kaxiras, J. Chem. Phys. 117, 4651 (2002).
http://dx.doi.org/10.1063/1.1495401
31.
D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkelman, J. Chem. Phys. 136, 074103 (2012).
http://dx.doi.org/10.1063/1.3684549
32.
R. Crehuet and M. J. Field, J. Chem. Phys. 118, 9563 (2003).
http://dx.doi.org/10.1063/1.1571817
33.
D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).
http://dx.doi.org/10.1063/1.2841941
34.
J. W. Chu, B. L. Trout, and B. R. Brooks, J. Chem. Phys. 119, 1270812717 (2003).
http://dx.doi.org/10.1063/1.1627754
35.
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. Persson, APL Mater. 1, 011002 (2013).
http://dx.doi.org/10.1063/1.4812323
36.
L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput, K. Persson, and L. A. Curtiss, J. Phys. Chem. Lett. 6(2), 283291 (2015).
http://dx.doi.org/10.1021/jz502319n
37.
A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. Persson, and G. Ceder, Comput. Mater. Sci. 50(8), 22952310 (2011).
http://dx.doi.org/10.1016/j.commatsci.2011.02.023
38.
F. Zhou, M. Cococcioni, C. Marianetti, D. Morgan, and G. Ceder, Phys. Rev. B. 70, 235121 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235121
39.
L. Wang, T. Maxisch, and G. Ceder, Chem. Mater. 19(3), 543552 (2007).
http://dx.doi.org/10.1021/cm0620943
40.
S. P. Ong, A. Jain, G. Hautier, B. Wang, and G. Ceder, Electrochem. Commun. 12(3), 427430 (2010).
http://dx.doi.org/10.1016/j.elecom.2010.01.010
41.
S. Adams and R. P. Rao, Phys. Status Solidi A 208(8), 17461753 (2011).
http://dx.doi.org/10.1002/pssa.201001116
42.
S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314319 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
43.
J. Greeley, I. Stephens, A. Bondarenko, T. Johansson, H. Hansen, T. Jaramillo, J. Rossmeisl, I. Chorkendorff, and J. Norskov, Nat. Chem. 1, 552556 (2009).
http://dx.doi.org/10.1038/nchem.367
44.
S. Curtarolo, D. Morgan, and G. Ceder, Calphad 29, 163211 (2015).
http://dx.doi.org/10.1016/j.calphad.2005.01.002
45.
L. Vitos, A. Ruban, H. Skriver, and J. Kollar, Surf. Sci. 411, 186202 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00363-X
46.
G. Kresse and J. Furthmuller, Phys. Rev. B 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
47.
W. E., W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002).
http://dx.doi.org/10.1103/physrevb.66.052301
48.
W. E., W. Ren, and E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007).
http://dx.doi.org/10.1063/1.2720838
49.
M. S. Islam, D. J. Driscoll, C. Fisher, and P. R. Slater, Chem. Mater. 17(20), 50855092 (2005).
http://dx.doi.org/10.1021/cm050999v
50.
See https://github.com/shaunrong/NEB_PathFinder for an implementation and usage example of PathFinder algorithm.
51.
H. C. Yu, C. Ling, J. Bhattacharya, J. C. Thomas, K. Thornton, and A. Van der Ven, Energy Environ. Sci. 7, 1760 (2014).
http://dx.doi.org/10.1039/c3ee43154a
52.
J. Bhattacharya and A. Van der Ven, Phys. Rev. B 83, 144302 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144302
53.
S. Asbrink, A. Waskowska, L. Gerward, J. S. Olsen, and E. Talik, Phys. Rev. B 60(18), 12651 (1999).
http://dx.doi.org/10.1103/physrevb.60.12651
54.
C. Ling and F. Mizuno, Chem. Mater. 25, 30623071 (2013).
http://dx.doi.org/10.1021/cm401250c
55.
K. Hoang and M. Johannes, Chem. Mater. 23(11), 30033013 (2011).
http://dx.doi.org/10.1021/cm200725j
56.
D. Morgan, A. Van der Ven, and G. Ceder, Electrochem. Solid-State Lett. 7(2), A3032 (2004).
http://dx.doi.org/10.1149/1.1633511
57.
R. Malik, A. Abdellahi, and G. Ceder, J. Electrochem. Soc. 160(5), A3179A3197 (2013).
http://dx.doi.org/10.1149/2.029305jes
58.
R. Malik, F. Zhou, and G. Ceder, Nat. Mater. 10(8), 587590 (2011).
http://dx.doi.org/10.1038/nmat3065
59.
S. P. Ong, V. L. Chevrier, and G. Ceder, Phys. Rev. B 83, 075112 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.075112
60.
D. O. Scanlon, A. Walsh, B. J. Morgan, and G. W. Watson, J. Phys. Chem. C 112, 99039911 (2008).
http://dx.doi.org/10.1021/jp711334f
61.
C. Delmas, H. Cognac-Auradou, J. M. Cocciantelli, J. M. Menetrier, and J. P. Doumerc, Solid State Ionics 69, 257264 (1994).
http://dx.doi.org/10.1016/0167-2738(94)90414-6
62.
G. Gershinsky, H. D. Yoo, Y. Gofer, and D. Aurbach, Langmuir 29, 1096410972 (2013).
http://dx.doi.org/10.1021/la402391f
63.
P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
http://dx.doi.org/10.1016/0009-2614(80)80396-4
64.
See https://www.nersc.gov/ for National Energy Research Scientific Computing Center .
http://dx.doi.org/10.1149/1.2059267
65.
A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and K. A. Persson, Concurr. Comput. Pract. Exp. 27, 50375059 (2015).
http://dx.doi.org/10.1002/cpe.3505
66.
P. Canepa, G. S. Gautam, R. Malik, S. Jayaraman, Z. Rong, K. R. Zavadil, K. Persson, and G. Ceder, Chem. Mater. 27(9), 33173325 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00389
67.
P. Canepa, S. Jayaraman, L. Cheng, N. N. Rajput, W. D. Richards, G. S. Gautam, L. A. Curtiss, K. A. Persson, and G. Ceder, Energy Environ. Sci. 8, 37183730 (2015).
http://dx.doi.org/10.1039/C5EE02340H
68.
See https://github.com/uw-cmg/MAST/releases for an implementation of the Pathfinder algorithm within the MAST package.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/7/10.1063/1.4960790
Loading
/content/aip/journal/jcp/145/7/10.1063/1.4960790
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/7/10.1063/1.4960790
2016-08-18
2016-09-26

Abstract

The Nudged Elastic Band (NEB) is an established method for finding minimum-energy paths and energy barriers of ion migration in materials, but has been hampered in its general application by its significant computational expense when coupled with density functional theory (DFT) calculations. Typically, an NEB calculation is initialized from a linear interpolation of successive intermediate structures (also known as images) between known initial and final states. However, the linear interpolation introduces two problems: (1) slow convergence of the calculation, particularly in cases where the final path exhibits notable curvature; (2) divergence of the NEB calculations if any intermediate image comes too close to a non-diffusing species, causing instabilities in the ensuing calculation. In this work, we propose a new scheme to accelerate NEB calculations through an improved path initialization and associated energy estimation workflow. We demonstrate that for cation migration in an ionic framework, initializing the diffusion path as the minimum energy path through a static potential built upon the DFT charge density reproduces the true NEB path within a 0.2 Å deviation and yields up to a 25% improvement in typical NEB runtimes. Furthermore, we find that the locally relaxed energy barrier derived from this initialization yields a good approximation of the NEB barrier, with errors within 20 meV of the true NEB value, while reducing computational expense by up to a factor of 5. Finally, and of critical importance for the automation of migration path calculations in high-throughput studies, we find that the new approach significantly enhances the stability of the calculation by avoiding unphysical image initialization. Our algorithm promises to enable efficient calculations of diffusion pathways, resolving a long-standing obstacle to the computational screening of intercalation compounds for Li-ion and multivalent batteries.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/7/1.4960790.html;jsessionid=kzJiy0ZMZC-HTqgLhKnylxUU.x-aip-live-03?itemId=/content/aip/journal/jcp/145/7/10.1063/1.4960790&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/7/10.1063/1.4960790&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/7/10.1063/1.4960790'
Right1,Right2,Right3,