Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. G. Debenedetti, “Supercooled and glassy water,” J. Phys.: Condens. Matter 15, R1669 (2003).
R. J. Speedy and C. A. Angell, “Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45 °C,” J. Chem. Phys. 65, 851 (1976).
A. Nilsson and L. G. M. Pettersson, “The structural origin of anomalous properties of liquid water,” Nat. Commun. 6, 8998 (2015).
V. Holten and M. A. Anisimov, “Entropy-driven liquid–liquid separation in supercooled water,” Sci. Rep. 2, 713 (2012).
J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Metastable liquid-liquid transition in a molecular model of water,” Nature 510, 385388 (2014).
R. Kurita and H. Tanaka, “Critical-like phenomena associated with liquid-liquid transition in a molecular liquid,” Science 306, 845848 (2004).
J. Russo and H. Tanaka, “Understanding waters anomalies with locally favoured structures,” Nat. Commun. 5, 3556 (2014).
H. Tanaka, “General view of a liquid-liquid phase transition,” Phys. Rev. E 62, 69686976 (2000).
C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T. M. Weiss, Y. Horikawa, M. Leetmaa et al., “The inhomogeneous structure of water at ambient conditions,” Proc. Natl. Acad. Sci. U. S. A. 106, 1521415218 (2009).
A. Nilsson, C. Huang, and L. G. M. Pettersson, “Fluctuations in ambient water,” J. Mol. Liq. 176, 216 (2012).
A. Nilsson and L. G. M. Pettersson, “Perspective on the structure of liquid water,” Chem. Phys. 389, 134 (2011).
G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley, “Generic mechanism for generating a liquid-liquid phase transition,” Nature 409, 692695 (2001).
F. Mallamace, C. Corsaro, and H. E. Stanley, “Possible relation of water structural relexation to water anomalies,” Proc. Natl. Acad. Sci. U. S. A. 110, 48994904 (2013).
O. Mishima and H. E. Stanley, “The relationship between liquid, supercooled and glassy water,” Nature 396, 329335 (1998).
O. Mishima and H. E. Stanley, “Decompression-induced melting of ice IV and the liquid-liquid transition in water,” Nature 392, 164168 (1998).
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, “Phase-behavior of metastable water,” Nature 360, 324328 (1992).
K. Stokely, M. G. Mazza, H. E. Stanley, and G. Franzese, “Effect of hydrogen bond cooperativity on the behavior of water,” Proc. Natl. Acad. Sci. U. S. A. 107, 13011306 (2010).
L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, “Relation between the widom line and the dynamic crossover in systems with a liquid–liquid phase transition,” Proc. Natl. Acad. Sci. U. S. A. 102, 16558 (2005).
S. R. Accordino, J. A. Rodriguez Friz, F. Sciortino, and G. A. Appignanesi, “Quantitative investigation of the two-state picture for water in the normal liquid and the supercooled regime,” Eur. Phys. J. E 34, 48 (2011).
G. A. Appignanesi, J. A. Rodriguez Friz, and F. Sciortino, “Evidence of two-state picture for supercooled water and its connections to glassy dynamics,” Eur. Phys. J. E 29, 305310 (2009).
P. Gallo and F. Sciortino, “Ising universality class for the liquid-liquid critical point of a one component fluid: A finite-size scaling test,” Phys. Rev. Lett. 106, 177801 (2012).
S. Harrington, R. Zhang, P. H. Poole, F. Sciortino, and H. E. Stanley, “Liquid-liquid phase transition: Evidence from simulations,” Phys. Rev. Lett. 78, 24092412 (1997).
P. H. Poole, S. R. Becker, F. Sciortino, and F. W. Starr, “Dynamical behavior near a liquid-liquid phase transition in simulations of supercooled water,” J. Phys. Chem. B 115, 1417614183 (2011).
F. Smallenburg, L. Filion, and F. Sciortino, “Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles,” Nat. Phys. 10, 653657 (2014).
M. Vedamuthu, S. Singh, and G. W. Robinson, “Properties of liquid water–origin of the density anomalies,” J. Phys. Chem. 98, 22222230 (1994).
K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, “Spatially inhomogeneous bimodal inherent structure in simulated liquid water,” Phys. Chem. Chem. Phys. 13, 1991819924 (2011).
H. Tanaka, “Simple physical model of liquid water,” J. Chem. Phys. 112, 799809 (2000).
L. G. M. Pettersson and A. Nilsson, “The structure of water; from ambient to deeply supercooled,” J. Non-Cryst. Solids 407, 399417 (2015).
J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinger, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub et al., “Ultrafast x-ray probing of water structure below the homogeneous ice nucleation temperature,” Nature 510, 381384 (2014).
C. Huang, T. M. Weiss, D. Nordlund, K. T. Wikfeldt, L. G. M. Pettersson, and A. Nilsson, “Increasing correlation length in bulk supercooled H2O, D2O and NaCl solution determined from small angle x-ray scattering,” J. Chem. Phys. 133, 134504 (2010).
G. N. I. Clark, G. Hura, J. Teixeira, A. K. Soper, and T. Head-Gordon, “Small-angle scattering and the structure of ambient liquid water,” Proc. Natl. Acad. Sci. U. S. A. 107, 1400314007 (2010).
A. K. Soper, J. Teixeira, and T. Head-Gordon, “Is ambient water inhomogeneous on the nanometer-length scale?,” Proc. Natl. Acad. Sci. U. S. A. 107, E44 (2010).
A. K. Soper, “Recent water myths,” Pure Appl. Chem. 82, 1855 (2010).
G. N. I. Clark, C. D. Cappa, J. D. Smith, R. J. Saykally, and T. Head-Gordon, “The structure of ambient water,” Mol. Phys. 108, 14151433 (2010).
N. J. English and J. S. Tse, “Density fluctuations in liquid water,” Phys. Rev. Lett. 106, 037801 (2011).
S. D. Overduin and G. N. Patey, “Understanding the structure factor and isothermal compressibility of ambient water in terms of local structural environments,” J. Phys. Chem. B 116, 1201412020 (2012).
K. T. Wikfeldt, C. Huang, A. Nilsson, and L. G. M. Pettersson, “Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water,” J. Chem. Phys. 134, 214506 (2011).
C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T. M. Weiss, Y. Horikawa, M. Leetmaa et al., “Reply to Soper et al. ‘Fluctuations in water around a bimodal distribution of local hydrogen bonded structural motifs,’” Proc. Natl. Acad. Sci. U. S. A. 107, E45 (2010).
B. Santra, R. A. Distasio, Jr., F. Martelli, and R. Car, “Local structure analysis in ab initio liquid water,” Mol. Phys. 113, 2829 (2015).
C. Huang, K. T. Wikfeldt, D. Nordlund, U. Bergmann, T. McQueen, J. Sellberg, L. G. M. Pettersson, and A. Nilsson, “Wide-angle x-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water,” Phys. Chem. Chem. Phys. 13, 1999720007 (2011).
L. B. Skinner, C. J. Benmore, J. C. Neuefeind, and J. B. Parise, “The structure of water around the compressibility minimum,” J. Chem. Phys. 141, 214507 (2014).
L. B. Skinner, C. J. Benmore, and J. B. Parise, “Comment on ‘molecular arrangement in water: Random but not quite,’” J. Phys.: Condens. Matter 24, 338001 (2012).
L. B. Skinner, C. Huang, D. Schlesinger, L. G. M. Pettersson, A. Nilsson, and C. J. Benmore, “Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range,” J. Chem. Phys. 138, 074506 (2013).
E. Shiratani and M. Sasai, “Growth and collapse of structural patterns in the hydrogen bond network in liquid water,” J. Chem. Phys. 104, 76717680 (1996).
E. Shiratani and M. Sasai, “Molecular scale precursor of the liquid-liquid phase transition of water,” J. Chem. Phys. 108, 32643276 (1998).
J. Neuefeind, C. J. Benmore, J. K. R. Weber, and D. Paschek, “More accurate x-ray scattering data of deeply supercooled bulk liquid water,” Mol. Phys. 109, 279288 (2011).
J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” J. Chem. Phys. 123, 234505 (2005).
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “GROMACS: Fast, flexible and free,” J. Comput. Chem. 26, 17011718 (2005).
M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys. 52, 71827190 (1981).
S. Nosé, “A molecular dynamics method for simulations in the canonical ensemble,” Mol. Phys. 52, 255268 (1984).
W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695 (1985).
F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225, 983989 (1984).
A. P. Willard and D. Chandler, “Instantaneous liquid interfaces,” J. Phys. Chem. B 114, 1954 (2010).
Wolfram Research, I.; Version 8.0 edition (Wolfram Research, Inc., Champaign, Illinois, 2010).
C. Vega, J. L. F. Abascal, and I. Nezbeda, “Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice,” J. Chem. Phys. 125, 34503 (2006).
J. L. Abascal and C. Vega, “Note: Equation of state and compressibility of supercooled water: Simulations and experiment,” J. Chem. Phys. 134, 186101 (2011).
H. L. Pi, J. L. Aragones, C. Vega, E. G. Noya, J. L. F. Abascal, M. A. Gonzalez, and C. McBride, “Anomalies in water as obtained from computer simulations of the TIP4P/2005 model: Density maxima, and density, isothermal compressibility and heat capacity minima,” Mol. Phys. 107, 365 (2009).
L. B. Skinner, M. Galib, J. L. Fulton, C. J. Mundy, J. B. Parise, V.-T. Pham, G. K. Schenter, and C. J. Benmore, “The structure of liquid water up to 360 MPa from x-ray diffraction measurements using a high Q-range and from molecular simulation,” J. Chem. Phys. 144, 134504 (2016).
D. E. Hare and C. M. Sorensen, “Densities of supercooled H2O and D2O in 25 μ glass capillaries,” J. Chem. Phys. 84, 50855089 (1986).
G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0° to 150 °C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20, 97105 (1975).
W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graphics 14, 3338 (1996).
D. Schlesinger, “Molecular structure and dynamics of liquid water — Simulations complementing experiments,” Ph.D. thesis, Stockholm University, 2015, available at

Data & Media loading...


Article metrics loading...



We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner [J. Chem. Phys. , 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd