Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/8/10.1063/1.4961404
1.
2.
P. G. Debenedetti, “Supercooled and glassy water,” J. Phys.: Condens. Matter 15, R1669 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/R01
3.
R. J. Speedy and C. A. Angell, “Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45 °C,” J. Chem. Phys. 65, 851 (1976).
http://dx.doi.org/10.1063/1.433153
4.
A. Nilsson and L. G. M. Pettersson, “The structural origin of anomalous properties of liquid water,” Nat. Commun. 6, 8998 (2015).
http://dx.doi.org/10.1038/ncomms9998
5.
V. Holten and M. A. Anisimov, “Entropy-driven liquid–liquid separation in supercooled water,” Sci. Rep. 2, 713 (2012).
http://dx.doi.org/10.1038/srep00713
6.
J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Metastable liquid-liquid transition in a molecular model of water,” Nature 510, 385388 (2014).
http://dx.doi.org/10.1038/nature13405
7.
R. Kurita and H. Tanaka, “Critical-like phenomena associated with liquid-liquid transition in a molecular liquid,” Science 306, 845848 (2004).
http://dx.doi.org/10.1126/science.1103073
8.
J. Russo and H. Tanaka, “Understanding waters anomalies with locally favoured structures,” Nat. Commun. 5, 3556 (2014).
http://dx.doi.org/10.1038/ncomms4556
9.
H. Tanaka, “General view of a liquid-liquid phase transition,” Phys. Rev. E 62, 69686976 (2000).
http://dx.doi.org/10.1103/physreve.62.6968
10.
C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T. M. Weiss, Y. Horikawa, M. Leetmaa et al., “The inhomogeneous structure of water at ambient conditions,” Proc. Natl. Acad. Sci. U. S. A. 106, 1521415218 (2009).
http://dx.doi.org/10.1073/pnas.0904743106
11.
A. Nilsson, C. Huang, and L. G. M. Pettersson, “Fluctuations in ambient water,” J. Mol. Liq. 176, 216 (2012).
http://dx.doi.org/10.1016/j.molliq.2012.06.021
12.
A. Nilsson and L. G. M. Pettersson, “Perspective on the structure of liquid water,” Chem. Phys. 389, 134 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.07.021
13.
G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley, “Generic mechanism for generating a liquid-liquid phase transition,” Nature 409, 692695 (2001).
http://dx.doi.org/10.1038/35055514
14.
F. Mallamace, C. Corsaro, and H. E. Stanley, “Possible relation of water structural relexation to water anomalies,” Proc. Natl. Acad. Sci. U. S. A. 110, 48994904 (2013).
http://dx.doi.org/10.1073/pnas.1221805110
15.
O. Mishima and H. E. Stanley, “The relationship between liquid, supercooled and glassy water,” Nature 396, 329335 (1998).
http://dx.doi.org/10.1038/24540
16.
O. Mishima and H. E. Stanley, “Decompression-induced melting of ice IV and the liquid-liquid transition in water,” Nature 392, 164168 (1998).
http://dx.doi.org/10.1038/32386
17.
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, “Phase-behavior of metastable water,” Nature 360, 324328 (1992).
http://dx.doi.org/10.1038/360324a0
18.
K. Stokely, M. G. Mazza, H. E. Stanley, and G. Franzese, “Effect of hydrogen bond cooperativity on the behavior of water,” Proc. Natl. Acad. Sci. U. S. A. 107, 13011306 (2010).
http://dx.doi.org/10.1073/pnas.0912756107
19.
L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, “Relation between the widom line and the dynamic crossover in systems with a liquid–liquid phase transition,” Proc. Natl. Acad. Sci. U. S. A. 102, 16558 (2005).
http://dx.doi.org/10.1073/pnas.0507870102
20.
S. R. Accordino, J. A. Rodriguez Friz, F. Sciortino, and G. A. Appignanesi, “Quantitative investigation of the two-state picture for water in the normal liquid and the supercooled regime,” Eur. Phys. J. E 34, 48 (2011).
http://dx.doi.org/10.1140/epje/i2011-11048-1
21.
G. A. Appignanesi, J. A. Rodriguez Friz, and F. Sciortino, “Evidence of two-state picture for supercooled water and its connections to glassy dynamics,” Eur. Phys. J. E 29, 305310 (2009).
http://dx.doi.org/10.1140/epje/i2009-10478-6
22.
P. Gallo and F. Sciortino, “Ising universality class for the liquid-liquid critical point of a one component fluid: A finite-size scaling test,” Phys. Rev. Lett. 106, 177801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.177801
23.
S. Harrington, R. Zhang, P. H. Poole, F. Sciortino, and H. E. Stanley, “Liquid-liquid phase transition: Evidence from simulations,” Phys. Rev. Lett. 78, 24092412 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2409
24.
P. H. Poole, S. R. Becker, F. Sciortino, and F. W. Starr, “Dynamical behavior near a liquid-liquid phase transition in simulations of supercooled water,” J. Phys. Chem. B 115, 1417614183 (2011).
http://dx.doi.org/10.1021/jp204889m
25.
F. Smallenburg, L. Filion, and F. Sciortino, “Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles,” Nat. Phys. 10, 653657 (2014).
http://dx.doi.org/10.1038/nphys3030
26.
M. Vedamuthu, S. Singh, and G. W. Robinson, “Properties of liquid water–origin of the density anomalies,” J. Phys. Chem. 98, 22222230 (1994).
http://dx.doi.org/10.1021/j100060a002
27.
K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, “Spatially inhomogeneous bimodal inherent structure in simulated liquid water,” Phys. Chem. Chem. Phys. 13, 1991819924 (2011).
http://dx.doi.org/10.1039/c1cp22076d
28.
H. Tanaka, “Simple physical model of liquid water,” J. Chem. Phys. 112, 799809 (2000).
http://dx.doi.org/10.1063/1.480609
29.
L. G. M. Pettersson and A. Nilsson, “The structure of water; from ambient to deeply supercooled,” J. Non-Cryst. Solids 407, 399417 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.026
30.
J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinger, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub et al., “Ultrafast x-ray probing of water structure below the homogeneous ice nucleation temperature,” Nature 510, 381384 (2014).
http://dx.doi.org/10.1038/nature13266
31.
C. Huang, T. M. Weiss, D. Nordlund, K. T. Wikfeldt, L. G. M. Pettersson, and A. Nilsson, “Increasing correlation length in bulk supercooled H2O, D2O and NaCl solution determined from small angle x-ray scattering,” J. Chem. Phys. 133, 134504 (2010).
http://dx.doi.org/10.1063/1.3495974
32.
G. N. I. Clark, G. Hura, J. Teixeira, A. K. Soper, and T. Head-Gordon, “Small-angle scattering and the structure of ambient liquid water,” Proc. Natl. Acad. Sci. U. S. A. 107, 1400314007 (2010).
http://dx.doi.org/10.1073/pnas.1006599107
33.
A. K. Soper, J. Teixeira, and T. Head-Gordon, “Is ambient water inhomogeneous on the nanometer-length scale?,” Proc. Natl. Acad. Sci. U. S. A. 107, E44 (2010).
http://dx.doi.org/10.1073/pnas.0912158107
34.
A. K. Soper, “Recent water myths,” Pure Appl. Chem. 82, 1855 (2010).
http://dx.doi.org/10.1351/PAC-CON-09-12-16
35.
G. N. I. Clark, C. D. Cappa, J. D. Smith, R. J. Saykally, and T. Head-Gordon, “The structure of ambient water,” Mol. Phys. 108, 14151433 (2010).
http://dx.doi.org/10.1080/00268971003762134
36.
N. J. English and J. S. Tse, “Density fluctuations in liquid water,” Phys. Rev. Lett. 106, 037801 (2011).
http://dx.doi.org/10.1103/physrevlett.106.037801
37.
S. D. Overduin and G. N. Patey, “Understanding the structure factor and isothermal compressibility of ambient water in terms of local structural environments,” J. Phys. Chem. B 116, 1201412020 (2012).
http://dx.doi.org/10.1021/jp3075749
38.
K. T. Wikfeldt, C. Huang, A. Nilsson, and L. G. M. Pettersson, “Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water,” J. Chem. Phys. 134, 214506 (2011).
http://dx.doi.org/10.1063/1.3594545
39.
C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T. M. Weiss, Y. Horikawa, M. Leetmaa et al., “Reply to Soper et al. ‘Fluctuations in water around a bimodal distribution of local hydrogen bonded structural motifs,’” Proc. Natl. Acad. Sci. U. S. A. 107, E45 (2010).
http://dx.doi.org/10.1073/pnas.0913504107
40.
B. Santra, R. A. Distasio, Jr., F. Martelli, and R. Car, “Local structure analysis in ab initio liquid water,” Mol. Phys. 113, 2829 (2015).
http://dx.doi.org/10.1080/00268976.2015.1058432
41.
C. Huang, K. T. Wikfeldt, D. Nordlund, U. Bergmann, T. McQueen, J. Sellberg, L. G. M. Pettersson, and A. Nilsson, “Wide-angle x-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water,” Phys. Chem. Chem. Phys. 13, 1999720007 (2011).
http://dx.doi.org/10.1039/c1cp22804h
42.
L. B. Skinner, C. J. Benmore, J. C. Neuefeind, and J. B. Parise, “The structure of water around the compressibility minimum,” J. Chem. Phys. 141, 214507 (2014).
http://dx.doi.org/10.1063/1.4902412
43.
L. B. Skinner, C. J. Benmore, and J. B. Parise, “Comment on ‘molecular arrangement in water: Random but not quite,’” J. Phys.: Condens. Matter 24, 338001 (2012).
http://dx.doi.org/10.1088/0953-8984/24/33/338001
44.
L. B. Skinner, C. Huang, D. Schlesinger, L. G. M. Pettersson, A. Nilsson, and C. J. Benmore, “Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range,” J. Chem. Phys. 138, 074506 (2013).
http://dx.doi.org/10.1063/1.4790861
45.
E. Shiratani and M. Sasai, “Growth and collapse of structural patterns in the hydrogen bond network in liquid water,” J. Chem. Phys. 104, 76717680 (1996).
http://dx.doi.org/10.1063/1.471475
46.
E. Shiratani and M. Sasai, “Molecular scale precursor of the liquid-liquid phase transition of water,” J. Chem. Phys. 108, 32643276 (1998).
http://dx.doi.org/10.1063/1.475723
47.
J. Neuefeind, C. J. Benmore, J. K. R. Weber, and D. Paschek, “More accurate x-ray scattering data of deeply supercooled bulk liquid water,” Mol. Phys. 109, 279288 (2011).
http://dx.doi.org/10.1080/00268976.2010.520040
48.
J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
49.
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “GROMACS: Fast, flexible and free,” J. Comput. Chem. 26, 17011718 (2005).
http://dx.doi.org/10.1002/jcc.20291
50.
M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys. 52, 71827190 (1981).
http://dx.doi.org/10.1063/1.328693
51.
S. Nosé, “A molecular dynamics method for simulations in the canonical ensemble,” Mol. Phys. 52, 255268 (1984).
http://dx.doi.org/10.1080/00268978400101201
52.
W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
53.
F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225, 983989 (1984).
http://dx.doi.org/10.1126/science.225.4666.983
54.
A. P. Willard and D. Chandler, “Instantaneous liquid interfaces,” J. Phys. Chem. B 114, 1954 (2010).
http://dx.doi.org/10.1021/jp909219k
55.
Wolfram Research, I.; Version 8.0 edition (Wolfram Research, Inc., Champaign, Illinois, 2010).
56.
C. Vega, J. L. F. Abascal, and I. Nezbeda, “Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice,” J. Chem. Phys. 125, 34503 (2006).
http://dx.doi.org/10.1063/1.2215612
57.
J. L. Abascal and C. Vega, “Note: Equation of state and compressibility of supercooled water: Simulations and experiment,” J. Chem. Phys. 134, 186101 (2011).
http://dx.doi.org/10.1063/1.3585676
58.
H. L. Pi, J. L. Aragones, C. Vega, E. G. Noya, J. L. F. Abascal, M. A. Gonzalez, and C. McBride, “Anomalies in water as obtained from computer simulations of the TIP4P/2005 model: Density maxima, and density, isothermal compressibility and heat capacity minima,” Mol. Phys. 107, 365 (2009).
http://dx.doi.org/10.1080/00268970902784926
59.
L. B. Skinner, M. Galib, J. L. Fulton, C. J. Mundy, J. B. Parise, V.-T. Pham, G. K. Schenter, and C. J. Benmore, “The structure of liquid water up to 360 MPa from x-ray diffraction measurements using a high Q-range and from molecular simulation,” J. Chem. Phys. 144, 134504 (2016).
http://dx.doi.org/10.1063/1.4944935
60.
D. E. Hare and C. M. Sorensen, “Densities of supercooled H2O and D2O in 25 μ glass capillaries,” J. Chem. Phys. 84, 50855089 (1986).
http://dx.doi.org/10.1063/1.450660
61.
G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0° to 150 °C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20, 97105 (1975).
http://dx.doi.org/10.1021/je60064a005
62.
W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graphics 14, 3338 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
63.
D. Schlesinger, “Molecular structure and dynamics of liquid water — Simulations complementing experiments,” Ph.D. thesis, Stockholm University, 2015, available at http://www.diva-portal.org/smash/get/diva2:854642/FULLTEXT03.pdf.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/8/10.1063/1.4961404
Loading
/content/aip/journal/jcp/145/8/10.1063/1.4961404
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/8/10.1063/1.4961404
2016-08-25
2016-09-30

Abstract

We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner [J. Chem. Phys. , 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/8/1.4961404.html;jsessionid=ZGmHrF0CLU4itSlazMYaTC6I.x-aip-live-06?itemId=/content/aip/journal/jcp/145/8/10.1063/1.4961404&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/8/10.1063/1.4961404&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/8/10.1063/1.4961404'
Right1,Right2,Right3,