Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/8/10.1063/1.4961408
1.
J. Relat-Goberna and S. Garcia-Manyes, “Direct observation of the dynamics of self-assembly of individual solvation layers in molecularly confined liquids,” Phys. Rev. Lett. 114, 258303 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.258303
2.
S. Granick, “Motions and relaxations of confined liquids,” Science 253, 13741379 (1991).
http://dx.doi.org/10.1126/science.253.5026.1374
3.
D. Addari and A. Satta, “Influence of HCOO on calcite growth from first principles,” J. Phys. Chem. C 119, 1978019788 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b04161
4.
A. D. Côté, R. Darkins, and D. M. Duffy, “Deformation twinning and the role of amino acids and magnesium in calcite hardness from molecular simulation,” Phys. Chem. Chem. Phys. 17, 2017820184 (2015).
http://dx.doi.org/10.1039/C5CP03370E
5.
N. Bovet, M. Yang, M. S. Javadi, and S. L. S. Stipp, “Interactions of alcohols with the calcite surface,” Phys. Chem. Chem. Phys. 17, 34903496 (2014).
http://dx.doi.org/10.1039/C4CP05235H
6.
P. Geysermans and C. Noguera, “Advances in atomistic simulations of mineral surfaces,” J. Mater. Chem. 19, 78077821 (2009).
http://dx.doi.org/10.1039/b903642c
7.
J. L. Arias and M. S. Fernández, “Polysaccharides and proteoglycans in calcium carbonate-based biomineralization,” Chem. Rev. 108, 44754482 (2008).
http://dx.doi.org/10.1021/cr078269p
8.
W. J. J. Huijgen, G. J. Witkamp, and R. N. J. Comans, “Mineral CO2 sequestration by steel slag carbonation,” Environ. Sci. Technol. 39, 96769682 (2005).
http://dx.doi.org/10.1021/es050795f
9.
V. Alvarado and E. Manrique, “Enhanced oil recovery: An update review,” Energies 3, 15291575 (2010).
http://dx.doi.org/10.3390/en3091529
10.
D. M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H. A. Arafat, and J. H. Lienhard-V, “Scaling and fouling in membrane distillation for desalination applications: A review,” Desalination 356, 294313 (2015).
http://dx.doi.org/10.1016/j.desal.2014.06.031
11.
D. S. Novikov, E. Fieremans, J. H. Jensen, and J. A. Helpern, “Random walks with barriers,” Nat. Phys. 7, 508514 (2011).
http://dx.doi.org/10.1038/nphys1936
12.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, New York, 1987).
13.
D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic Press, San Diego, 2002).
14.
J. Mittal, T. M. Truskett, J. R. Errington, and G. Hummer, “Layering and position-dependent diffusive dynamics of confined fluids,” Phys. Rev. Lett. 100, 145901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.145901
15.
P. Liu, E. Harder, and B. J. Berne, “On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water,” J. Phys. Chem. B 108, 65956602 (2004).
http://dx.doi.org/10.1021/jp0375057
16.
J. Martí and M. C. Gordillo, “Temperature effects on the static and dynamic properties of liquid water inside nanotubes,” Phys. Rev. E 64, 021504 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.021504
17.
A. Striolo, “The mechanism of water diffusion in narrow carbon nanotubes,” Nano Lett. 6, 633639 (2006).
http://dx.doi.org/10.1021/nl052254u
18.
J. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, “Effects of substrate and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study,” Geochim. Cosmochim. Acta 70, 562582 (2006).
http://dx.doi.org/10.1016/j.gca.2005.10.006
19.
G. Milano, G. Guerra, and F. Müller-Plathe, “Anisotropic diffusion of small penetrants in the δ crystalline phase of syndiotactic polystyrene: A molecular dynamics simulation study,” Chem. Mater. 14, 29772982 (2002).
http://dx.doi.org/10.1021/cm011297i
20.
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation,” J. Chem. Theory Comput. 4, 435447 (2008).
http://dx.doi.org/10.1021/ct700301q
21.
C. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, and J. J. DeYoreo, “Formation of chiral morphologies through selective binding of amino acids to calcite surface steps,” Nature 411, 775779 (2001).
http://dx.doi.org/10.1038/35081034
22.
S. Xiao, S. Edwards, and F. Gräter, “A new transferable forcefield for simulating the mechanics of CaCO3 crystals,” J. Phys. Chem. C 115, 2006720075 (2011).
http://dx.doi.org/10.1021/jp202743v
23.
H. Chen, A. Z. Panagiotopoulos, and E. P. Gianellis, “Atomistic molecular dynamics simulations of carbohydrate-calcite interactions in concentrated brine,” Langmuir 31, 24072413 (2015).
http://dx.doi.org/10.1021/la504595g
24.
M. G. Martin and J. I. Siepmann, “Transferable potential for phase equilibria. 1. United-atom description of n-alkanes,” J. Phys. Chem. B 102, 25692577 (1998).
http://dx.doi.org/10.1021/jp972543+
25.
J. J. Poroff and J. I. Siepmann, “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen,” AIChE J. 47, 16761682 (2001).
http://dx.doi.org/10.1002/aic.690470719
26.
T. Darden, D. York, and L. Pedersen, “Particle mesh ewald: An N ⋅ log(N) method for ewald sums in large systems,” J. Chem. Phys. 98, 1008910092 (1993).
http://dx.doi.org/10.1063/1.464397
27.
S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511519 (1984).
http://dx.doi.org/10.1063/1.447334
28.
W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 16951697 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
29.
J. Chowdhary and B. M. Ladanyi, “Molecular simulation study of water mobility in aerosol-OT reverse micelles,” J. Phys. Chem. A 115, 63066316 (2011).
http://dx.doi.org/10.1021/jp201866t
30.
S. J. Marrink and H. J. C. Berendsen, “Simulation of water transport through a lipid membrane,” J. Phys. Chem. 98, 41554168 (1994).
http://dx.doi.org/10.1021/j100066a040
31.
S. Sriraman, I. G. Kevrekidis, and G. Hummer, “Coarse master equation from Bayesian analysis of replica molecular dynamics simulations,” J. Phys. Chem. B 109, 64796484 (2005).
http://dx.doi.org/10.1021/jp046448u
32.
M. Sega, R. Vallauri, and S. Malchionna, “Diffusion of water in confined geometry: The case of a multilamellar bilayer,” Phys. Rev. E 72, 041201 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.041201
33.
J. R. Kirkwood, Mathematical Physics with Partial Differential Equations (Academic Press, Amsterdam, 2013).
34.
R. B. Bird, W. E. Stewart, and E. N. Lighfoot, Transport Phenomena, 2nd ed. (John Wiley & Sons Inc., New York, 2002).
35.
R. J. Speedy, “Diffusion in the hard sphere fluid,” Mol. Phys. 62, 509515 (1987).
http://dx.doi.org/10.1080/00268978700102371
36.
R. F. Cracknell, D. Nicholson, and K. E. Gubbins, “Molecular dynamics study of the self-diffusion of supercritical methane in slit-shaped graphitic micropores,” J. Chem. Soc., Faraday Trans. 91, 13771383 (1995).
http://dx.doi.org/10.1039/ft9959101377
37.
F. F. Abraham, “The interfacial density profile of Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulation,” J. Chem. Phys. 68, 37133716 (1978).
http://dx.doi.org/10.1063/1.436229
38.
J. Zhou and W. Wang, “Adsorption and diffusion of supercritical carbon dioxide in slit pores,” Langmuir 16, 80638070 (2000).
http://dx.doi.org/10.1021/la000216e
39.
D. Wang, C. He, M. P. Stoykovich, and D. K. Schwartz, “Nanoscale topography influences polymer surface diffusion,” ACS Nano 9, 16561664 (2015).
http://dx.doi.org/10.1021/nn506376n
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/8/10.1063/1.4961408
Loading
/content/aip/journal/jcp/145/8/10.1063/1.4961408
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/8/10.1063/1.4961408
2016-08-29
2016-09-25

Abstract

Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/8/1.4961408.html;jsessionid=Dzal-MnD9uhBmH3SnLaBtKD1.x-aip-live-03?itemId=/content/aip/journal/jcp/145/8/10.1063/1.4961408&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/8/10.1063/1.4961408&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/8/10.1063/1.4961408'
Right1,Right2,Right3,