Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/8/10.1063/1.4961650
1.
S. Mamone, J. Y.-C. Chen, R. Bhattacharyya, M. H. Levitt, R. G. Lawler, A. J. Horsewill, T. Rõõm, Z. Bačić, and N. J. Turro, Coord. Chem. Rev. 255, 938 (2011).
http://dx.doi.org/10.1016/j.ccr.2010.12.029
2.
K. Komatsu, M. Murata, and Y. Murata, Science 307, 238 (2005).
http://dx.doi.org/10.1126/science.1106185
3.
M. Murata, Y. Murata, and K. Komatsu, J. Am. Chem. Soc. 128, 8024 (2006).
http://dx.doi.org/10.1021/ja061857k
4.
M. Xu, F. Sebastianelli, Z. Bačić, R. Lawler, and N. J. Turro, J. Chem. Phys. 128, 011101 (2008).
http://dx.doi.org/10.1063/1.2828556
5.
M. Xu, F. Sebastianelli, Z. Bačić, R. Lawler, and N. J. Turro, J. Chem. Phys. 129, 064313 (2008).
http://dx.doi.org/10.1063/1.2967858
6.
M. Xu, F. Sebastianelli, B. R. Gibbons, Z. Bačić, R. Lawler, and N. J. Turro, J. Chem. Phys. 130, 224306 (2009).
http://dx.doi.org/10.1063/1.3152574
7.
S. Mamone, M. Ge, D. Hüvonen, U. Nagel, A. Danquigny, F. Cuda, M. C. Grossel, Y. Murata, K. Komatsu, M. H. Levitt, T. Rõõm, and M. Carravetta, J. Chem. Phys. 130, 081103 (2009).
http://dx.doi.org/10.1063/1.3080163
8.
S. Mamone, “Theory and spectroscopy of dihydrogen endofullerenes,” Ph.D. thesis, University of Southampton, School of Chemistry, 2011.
9.
M. Ge, U. Nagel, D. Hüvonen, T. Rõõm, S. Mamone, M. H. Levitt, M. Carravetta, Y. Murata, K. Komatsu, J. Y.-C. Chen, and N. J. Turro, J. Chem. Phys. 134, 054507 (2011).
http://dx.doi.org/10.1063/1.3535598
10.
M. Ge, U. Nagel, D. Hüvonen, T. Rõõm, S. Mamone, M. H. Levitt, M. Carravetta, Y. Murata, K. Komatsu, X. Lei, and N. J. Turro, J. Chem. Phys. 135, 114511 (2011).
http://dx.doi.org/10.1063/1.3637948
11.
A. J. Horsewill, S. Rols, M. R. Johnson, Y. Murata, M. Murata, K. Komatsu, M. Carravetta, S. Mamone, M. H. Levitt, J. Y.-C. Chen, J. A. Johnson, X. Lei, and N. J. Turro, Phys. Rev. B 82, 081410(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081410
12.
A. J. Horsewill, K. S. Panesar, S. Rols, J. Ollivier, M. R. Johnson, M. Carravetta, S. Mamone, M. H. Levitt, Y. Murata, K. Komatsu, J. Y.-C. Chen, J. A. Johnson, X. Lei, and N. J. Turro, Phys. Rev. B 85, 205440 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205440
13.
A. J. Horsewill, K. Goh, S. Rols, J. Ollivier, M. R. Johnson, M. H. Levitt, M. Carravetta, S. Mamone, Y. Murata, J. Y.-C. Chen, J. A. Johnson, X. Lei, and N. J. Turro, Phil. Trans. R. Soc. A 371, 20110627 (2013).
http://dx.doi.org/10.1098/rsta.2011.0627
14.
M. Xu, L. Ulivi, M. Celli, D. Colognesi, and Z. Bačić, Phys. Rev. B 83, 241403(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.83.241403
15.
M. Xu and Z. Bačić, Phys. Rev. B 84, 195445 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195445
16.
M. Xu, L. Ulivi, M. Celli, D. Colognesi, and Z. Bačić, Chem. Phys. Lett. 563, 1 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.01.013
17.
M. Xu, S. Ye, A. Powers, R. Lawler, N. J. Turro, and Z. Bačić, J. Chem. Phys. 139, 064309 (2013).
http://dx.doi.org/10.1063/1.4817534
18.
M. Xu, S. Ye, R. Lawler, N. J. Turro, and Z. Bačić, Phil. Trans. R. Soc. A 371, 20110630 (2013).
http://dx.doi.org/10.1098/rsta.2011.0630
19.
M. Xu, M. Jiménez-Ruiz, M. R. Johnson, S. Rols, S. Ye, M. Carravetta, M. S. Denning, X. Lei, Z. Bačić, and A. J. Horsewill, Phys. Rev. Lett. 113, 123001 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.123001
20.
M. Xu, S. Ye, and Z. Bačić, J. Phys. Chem. Lett. 6, 3721 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01505
21.
B. Poirier, J. Chem. Phys. 143, 101104 (2015).
http://dx.doi.org/10.1063/1.4930922
22.
E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer, J. Chem. Phys. 104, 832 (1996).
http://dx.doi.org/10.1063/1.470809
23.
P. M. Felker and Z. Bačić, J. Chem. Phys. 144, 201101 (2016).
http://dx.doi.org/10.1063/1.4953180
24.
T. Yildirim and A. B. Harris, Phys. Rev. B 66, 214301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.214301
25.
Throughout this paper we use “isotropic” to refer to any tensor invariant to rotation about any axis fixed to the C60 cage and passing through the center of that cage including all spherical tensors of rank 0.
26.
R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley-Interscience, New York, 1988).
27.
V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 106, 5085 (1997).
http://dx.doi.org/10.1063/1.473554
28.
M. R. Wall and D. Neuhauser, J. Chem. Phys. 102, 8011 (1995).
http://dx.doi.org/10.1063/1.468999
29.
This matches the λ-splitting behavior characterized for (n, l, j) = (1, 1, 1) of H2 in a spherically symmetric cavity. See Appendix B of Ref. 24.
30.
R. J. Cross, J. Phys. Chem. A 105, 6943 (2001).
http://dx.doi.org/10.1021/jp011054d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/8/10.1063/1.4961650
Loading
/content/aip/journal/jcp/145/8/10.1063/1.4961650
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/8/10.1063/1.4961650
2016-08-30
2016-09-27

Abstract

We report an investigation of the translation-rotation (TR) level structure of H entrapped in C, in the rigid-monomer approximation, by means of a low-order perturbation theory (PT). We focus in particular on the degree to which PT can accurately account for that level structure, by comparison with the variational quantum five-dimensional calculations. To apply PT to the system, the interaction potential of H@C is decomposed into a sum over bipolar spherical tensors. A zeroth-order Hamiltonian, , is then constructed as the sum of the TR kinetic-energy operator and the one term in the tensor decomposition of the potential that depends solely on the radial displacement of the H center of mass (c.m.) from the cage center. The remaining terms in the potential are treated as perturbations. The eigenstates of , constructed to also account for the coupling of the angular momentum of the H c.m. about the cage center with the rotational angular momentum of the H about the c.m., are taken as the PT zeroth-order states. This zeroth-order level structure is shown to be an excellent approximation to the true one except for two types of TR-level splittings present in the latter. We then show that first-order PT accounts very well for these splittings, with respect to both their patterns and magnitudes. This allows one to connect specific features of the level structure with specific features of the potential-energy surface, and provides important new physical insight into the characteristics of the TR level structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/8/1.4961650.html;jsessionid=s9XJtHbL_Y8SSfJs3dQDxudJ.x-aip-live-03?itemId=/content/aip/journal/jcp/145/8/10.1063/1.4961650&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/8/10.1063/1.4961650&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/8/10.1063/1.4961650'
Right1,Right2,Right3,