Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/8/10.1063/1.4961686
1.
A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).
http://dx.doi.org/10.1021/cr0505627
2.
A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093602
3.
N. Nakatani, S. Wouters, D. V. Neck, and G. K.-L. Chan, J. Chem. Phys. 140, 024108 (2014).
http://dx.doi.org/10.1063/1.4860375
4.
S. Wouters, N. Nakatani, D. V. Neck, and G. K.-L. Chan, Phys. Rev. B 88, 075122 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075122
5.
J. Haegeman, T. J. Osborne, and F. Verstraete, Phys. Rev. B 88, 075133 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075133
6.
M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094449
7.
L. Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 3719 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00480
8.
J. E. Subotnik, J. Chem. Phys. 135, 071104 (2011).
http://dx.doi.org/10.1063/1.3627152
9.
J. D. Watts, S. R. Gwaltney, and R. J. Bartlett, J. Chem. Phys. 105, 6979 (1996).
http://dx.doi.org/10.1063/1.471988
10.
S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999).
http://dx.doi.org/10.1063/1.479866
11.
R. J. Cave, F. Zhang, N. T. Maitra, and K. Burke, Chem. Phys. Lett. 389, 39 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.051
12.
L. Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 3436 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00508
13.
M. P. Nightingale and V. Melik-Alaverdian, Phys. Rev. Lett. 87, 043401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.043401
14.
C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys. Rev. Lett. 98, 110201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.110201
15.
J. Toulouse and C. J. Umrigar, J. Chem. Phys. 128, 174101 (2008).
http://dx.doi.org/10.1063/1.2908237
16.
W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.33
17.
M. A. Morales, J. McMinis, B. K. Clark, J. Kim, and G. E. Scuseria, J. Chem. Theory Comput. 8, 2181 (2012).
http://dx.doi.org/10.1021/ct3003404
18.
M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003).
http://dx.doi.org/10.1063/1.1604379
19.
M. Casula, C. Attaccalite, and S. Sorella, J. Chem. Phys. 121, 7110 (2004).
http://dx.doi.org/10.1063/1.1794632
20.
S. Sorella, M. Casula, and D. Rocca, J. Chem. Phys. 127, 014105 (2007).
http://dx.doi.org/10.1063/1.2746035
21.
M. Marchi, S. Azadi, M. Casula, and S. Sorella, J. Chem. Phys. 131, 154116 (2009).
http://dx.doi.org/10.1063/1.3249966
22.
E. Neuscamman, Phys. Rev. Lett. 109, 203001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.203001
23.
E. Neuscamman, J. Chem. Phys. 139, 194105 (2013).
http://dx.doi.org/10.1063/1.4829835
24.
E. Neuscamman, J. Chem. Phys. 139, 181101 (2013).
http://dx.doi.org/10.1063/1.4829536
25.
A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
http://dx.doi.org/10.1063/1.1590951
26.
M. J. Gillan, F. R. Manby, M. D. Towler, and D. Alfè, J. Chem. Phys. 136, 244105 (2012).
http://dx.doi.org/10.1063/1.4730035
27.
D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys. 138, 221102 (2013).
http://dx.doi.org/10.1063/1.4810882
28.
P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
http://dx.doi.org/10.1016/0009-2614(88)87412-8
29.
H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
30.
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
31.
J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).
http://dx.doi.org/10.1063/1.2834918
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/8/10.1063/1.4961686
Loading
/content/aip/journal/jcp/145/8/10.1063/1.4961686
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/8/10.1063/1.4961686
2016-08-25
2016-09-29

Abstract

We present a new method for modeling electronically excited states that overcomes a key failing of linear response theory by allowing the underlying ground state ansatz to relax in the presence of an excitation. The method is variational, has a cost similar to ground state variational Monte Carlo, and admits both open and periodic boundary conditions. We present preliminary numerical results showing that, when paired with the Jastrow antisymmetric geminal power ansatz, the variation-after-response formalism delivers accuracies for valence and charge transfer single excitations on par with equation of motion coupled cluster, while surpassing coupled cluster’s accuracy for excitations with significant doubly excited character.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/8/1.4961686.html;jsessionid=CsCPqra_loVucbJwE2YybWqJ.x-aip-live-03?itemId=/content/aip/journal/jcp/145/8/10.1063/1.4961686&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/8/10.1063/1.4961686&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/8/10.1063/1.4961686'
Right1,Right2,Right3,