Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/9/10.1063/1.4961687
1.
J. Dupont, Acc. Chem. Res. 44, 1223 (2007).
http://dx.doi.org/10.1021/ar2000937
2.
G. J. Janz, C. Solomons, and H. J. Gardner, Chem. Rev. 58, 461 (1958).
http://dx.doi.org/10.1021/cr50021a002
3.
B. J. Piersma, D. M. Ryan, E. R. Schumacher, and T. L. Riechel, J. Electrochem. Soc. 143, 908 (1996).
http://dx.doi.org/10.1149/1.1836557
4.
C. A. Dos Santos and E. J. Pessine, Proc. Electrochem. Soc. 98(11), 98 (1998).
5.
X. Y. Yan and D. J. Fray, J. Alloys Compd. 486, 154 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.06.176
6.
S. Sanchez, C. Lucas, G. S. Picard, M. R. Bermejo, and Y. Castrillejo, Thin Solid Films 361, 107 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00858-5
7.
J. Wei, Q. Guo, X. Li, and B. Li, J. Mater. Sci. 50, 4952 (2015).
http://dx.doi.org/10.1007/s10853-015-9042-9
8.
R. A. Guidotti and P. Masset, J. Power Sources 161, 1443 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2006.06.013
9.
K. Wang, K. Jiang, B. Chung, T. Ouchi, P. J. Burke, D. A. Boysen, D. J. Bradwell, H. Kim, U. Muecke, and D. R. Sadoway, Nature 514, 348 (2014).
http://dx.doi.org/10.1038/nature13700
10.
B. L. Spatocco, T. Ouchi, G. Lambotte, P. J. Burke, and D. R. Sadoway, J. Electrochem. Soc. 162, A2729 (2015).
http://dx.doi.org/10.1149/2.0441514jes
11.
K. E. Johnson, Electrochem. Soc. Interface 16, 38 (2007).
12.
G. W. Driver and K. E. Johnson, ECS Trans. 16(49), 19 (2009).
http://dx.doi.org/10.1149/1.3159304
13.
L. F. Grantham and S. J. Yosim, J. Phys. Chem. 67, 2506 (1963).
http://dx.doi.org/10.1021/j100805a518
14.
L. F. Grantham and S. J. Yosim, J. Chem. Phys. 45, 1192 (1966).
http://dx.doi.org/10.1063/1.1727737
15.
L. F. Grantham and S. J. Yosim, J. Phys. Chem. 72, 762 (1968).
http://dx.doi.org/10.1021/j100848a073
16.
A. J. Darnell, W. A. McCollum, and S. J. Yosim, J. Phys. Chem. 73, 4116 (1969).
http://dx.doi.org/10.1021/j100846a013
17.
B. F. Markov and Yu. K. Delimarskii, Ukrain. Khem. Zhur. 19, 255 (1953).
18.
G. J. Janz and J. D. E. McIntyre, Ann. N. Y. Acad. Sci. 79, 790 (1960).
http://dx.doi.org/10.1111/j.1749-6632.1960.tb42755.x
19.
G. J. Janz and J. D. E. McIntyre, J. Electrochem. Soc. 109, 842 (1962).
http://dx.doi.org/10.1149/1.2425566
20.
G. J. Janz and D. W. James, J. Chem. Phys. 38, 905 (1962).
http://dx.doi.org/10.1063/1.1733782
21.
G. Treiber and K. Tödheide, Ber. Bunsen-Ges. Phys. Chem. 77, 540 (1973).
http://dx.doi.org/10.1002/bbpc.19730770711
22.
K. Tödheide, Angew. Chem., Int. Ed. Engl. 19, 606 (1980).
http://dx.doi.org/10.1002/anie.198006061
23.
A. T. Clay, C. M. Kuntz, K. E. Johnson, and A. L. L. East, J. Chem. Phys. 136, 124504 (2012).
http://dx.doi.org/10.1063/1.3694830
24.
C. M. Kuntz and A. L. L. East, ECS Trans. 50(11), 71 (2013).
http://dx.doi.org/10.1149/05011.0071ecst
25.
C. J. T. de Grotthuss, Ann. Chim. Phys. 58, 54 (1806);
English translations appeared as, C. J. T. de Grotthuss, Philos. Mag. Ser. 1 25, 330 (1806);
http://dx.doi.org/10.1080/14786440608563457
and as C. J. T. de Grotthuss, Biochim. Biophys. Acta 1757, 871 (2006).
http://dx.doi.org/10.1016/j.bbabio.2006.07.004
26.
T. Erdey-Grúz, Z. Phys. Chem. A 178, 138 (1937).
27.
For molten TlCl, see, P. L. Spedding, J. Phys. Chem. 76, 1348 (1972);
http://dx.doi.org/10.1021/j100653a023
P. L. Spedding, Electrochim. Acta 18, 111 (1973);
http://dx.doi.org/10.1016/0013-4686(73)87019-7
For I/I2, see, D. J. Bearcroft and N. H. Nachtrieb, J. Phys. Chem. 71, 316 (1967);
http://dx.doi.org/10.1016/0013-4686(73)87019-7
D. J. Bearcroft and N. H. Nachtrieb, J. Phys. Chem. 71, 4400 (1967);
http://dx.doi.org/10.1021/j100872a036
For Br/Br2, see, I. Rubenstein, M. Bixon, and E. Gileadi, J. Phys. Chem. 84, 715 (1980);
http://dx.doi.org/10.1021/j100444a007
For a very recent report of O2− shuttling in a simulation of CO2 in molten CaCO3, see, D. Corradini, F.-X. Coudert, and R. Vuilleumier, Nat. Chem. 8, 454 (2016).
http://dx.doi.org/10.1038/nchem.2450
28.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
29.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
30.
G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
http://dx.doi.org/10.1088/0953-8984/6/40/015
31.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
32.
S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
33.
A. R. Leach, Molecular Modelling: Principles and Applications, 2nd ed. (Pearson, Harlow, UK, 2001).
34.
W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
35.
D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977).
http://dx.doi.org/10.1088/0022-3719/10/16/019
36.
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pedersen, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
37.
S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
38.
G. J. Janz, J. Phys. Chem. Ref. Data 17(Suppl. 2), 1309 (1988).
http://dx.doi.org/10.1063/1.555819
39.
D. Coslovich, J.-P. Hansen, and G. Kahl, J. Chem. Phys. 134, 244514 (2011).
http://dx.doi.org/10.1063/1.3602469
40.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009.
41.
K. Hilpert, S. Roszak, J. Saloni, M. Miller, P. Lipkowski, and J. Leszczynski, J. Phys. Chem. A 109, 1286 (2005).
http://dx.doi.org/10.1021/jp0460691
42.
J. M. van den Berg, Acta Crystallogr. 14, 1002 (1961).
http://dx.doi.org/10.1107/S0365110X61002886
43.
A. B. Salyulev and A. M. Potapov, Z. Naturforsch. 70a, 683 (2015).
44.
J. M. R. Clarke and C. Solomons, J. Chem. Phys. 47, 1823 (1967).
http://dx.doi.org/10.1063/1.1712172
45.
J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry (Plenum Press, New York, 1970), Vol. 1.
46.
J. Johnston, J. Am. Chem. Soc. 31, 1010 (1909).
http://dx.doi.org/10.1021/ja01939a003
47.
T. Erdey-Grúz, Transport Phenomenon in Aqueous Solutions (Halsted Press, John Wiley & Sons, Inc., New York, 1974).
48.
A. Gierer and K. Wirtz, J. Chem. Phys. 17, 745 (1949);
http://dx.doi.org/10.1063/1.1747388
A. Gierer and K. Wirtz, J. Phys. Chem. 56, 914 (1952).
http://dx.doi.org/10.1021/j150499a022
49.
B. E. Conway, J. O’M. Bockris, and H. Linton, J. Chem. Phys. 24, 834 (1956).
http://dx.doi.org/10.1063/1.1742619
50.
H. Bloom and E. Heymann, Proc. R. Soc. A 188, 392 (1947).
http://dx.doi.org/10.1098/rspa.1947.0016
51.
CRC Handbook of Chemistry and Physics, 96th ed., edited by W. M. Haynes (CRC Press, Boca Raton, FL, 2015), Sec. 4, pp. 443.
52.
A. Klemm, “Transport properties of molten salts,” in Molten Salt Chemistry, edited byM. Blander (InterScience, New York, 1964).
53.
A. B. Salyulev and A. M. Potapov, J. Chem. Eng. Data 60, 484 (2015).
http://dx.doi.org/10.1021/je500433d
54.
C. A. Angell, J. Phys. Chem. 70, 2793 (1966).
http://dx.doi.org/10.1021/j100881a014
55.
S. I. Smedley, The Interpretation of Ionic Conductivity in Liquids (Plenum Press, New York, 1980).
56.
I. Okada and R. Takagi, Z. Naturforsch. 36a, 378 (1981).
57.
L. F. Grantham and S. J. Yosim, J. Chem. Phys. 38, 1671 (1963).
http://dx.doi.org/10.1063/1.1776939
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/9/10.1063/1.4961687
Loading
/content/aip/journal/jcp/145/9/10.1063/1.4961687
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/9/10.1063/1.4961687
2016-09-02
2016-09-27

Abstract

The phenomenon of electrical conductivity maxima of molten salts versus temperature during orthobaric (closed-vessel) conditions is further examined via simulations. Previously, in a study of molten BiCl, a new theory was offered in which the conductivity falloff at high temperatures is due not to traditional ion association, but to a rise in the activation energy for atomic ions hopping from counterion to counterion. Here this theory is further tested on two more inorganic melts which exhibit conductivity maxima: another high-conducting melt (SnCl, σ = 2.81 Ω−1 cm−1) and a low-conducting one (HgBr, σ = 4.06 × 10−4 Ω−1 cm−1). First, molecular dynamics simulations were performed and again appear successful in reproducing the maxima for both these liquids. Second, analysis of the simulated liquid structure (radial distributions, species concentrations) was performed. In the HgBr case, a very molecular liquid like water, a clear was observed in simulation when seeding the system with a HgBr+ cation and HgBr anion. The first conclusion is that the hopping mechanism offered for molten BiCl is simply the Grotthuss mechanism for conduction, applicable not just to H+ ions, but also to halide ions in post-transition-metal halide melts. Second, it is conjectured that the conductivity maximum is due to rising activation energy in network-covalent (halide-bridging) melts (BiCl, SnCl, PbCl), but possibly a falling Arrhenius prefactor (collision frequency) for molecular melts (HgBr).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/9/1.4961687.html;jsessionid=on9HajMTO9ew-GXt9AhgGPb4.x-aip-live-03?itemId=/content/aip/journal/jcp/145/9/10.1063/1.4961687&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/9/10.1063/1.4961687&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4961687'
Right1,Right2,Right3,