Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Dupont, Acc. Chem. Res. 44, 1223 (2007).
G. J. Janz, C. Solomons, and H. J. Gardner, Chem. Rev. 58, 461 (1958).
B. J. Piersma, D. M. Ryan, E. R. Schumacher, and T. L. Riechel, J. Electrochem. Soc. 143, 908 (1996).
C. A. Dos Santos and E. J. Pessine, Proc. Electrochem. Soc. 98(11), 98 (1998).
X. Y. Yan and D. J. Fray, J. Alloys Compd. 486, 154 (2009).
S. Sanchez, C. Lucas, G. S. Picard, M. R. Bermejo, and Y. Castrillejo, Thin Solid Films 361, 107 (2000).
J. Wei, Q. Guo, X. Li, and B. Li, J. Mater. Sci. 50, 4952 (2015).
R. A. Guidotti and P. Masset, J. Power Sources 161, 1443 (2006).
K. Wang, K. Jiang, B. Chung, T. Ouchi, P. J. Burke, D. A. Boysen, D. J. Bradwell, H. Kim, U. Muecke, and D. R. Sadoway, Nature 514, 348 (2014).
B. L. Spatocco, T. Ouchi, G. Lambotte, P. J. Burke, and D. R. Sadoway, J. Electrochem. Soc. 162, A2729 (2015).
K. E. Johnson, Electrochem. Soc. Interface 16, 38 (2007).
G. W. Driver and K. E. Johnson, ECS Trans. 16(49), 19 (2009).
L. F. Grantham and S. J. Yosim, J. Phys. Chem. 67, 2506 (1963).
L. F. Grantham and S. J. Yosim, J. Chem. Phys. 45, 1192 (1966).
L. F. Grantham and S. J. Yosim, J. Phys. Chem. 72, 762 (1968).
A. J. Darnell, W. A. McCollum, and S. J. Yosim, J. Phys. Chem. 73, 4116 (1969).
B. F. Markov and Yu. K. Delimarskii, Ukrain. Khem. Zhur. 19, 255 (1953).
G. J. Janz and J. D. E. McIntyre, Ann. N. Y. Acad. Sci. 79, 790 (1960).
G. J. Janz and J. D. E. McIntyre, J. Electrochem. Soc. 109, 842 (1962).
G. J. Janz and D. W. James, J. Chem. Phys. 38, 905 (1962).
G. Treiber and K. Tödheide, Ber. Bunsen-Ges. Phys. Chem. 77, 540 (1973).
K. Tödheide, Angew. Chem., Int. Ed. Engl. 19, 606 (1980).
A. T. Clay, C. M. Kuntz, K. E. Johnson, and A. L. L. East, J. Chem. Phys. 136, 124504 (2012).
C. M. Kuntz and A. L. L. East, ECS Trans. 50(11), 71 (2013).
C. J. T. de Grotthuss, Ann. Chim. Phys. 58, 54 (1806);
English translations appeared as, C. J. T. de Grotthuss, Philos. Mag. Ser. 1 25, 330 (1806);
and as C. J. T. de Grotthuss, Biochim. Biophys. Acta 1757, 871 (2006).
T. Erdey-Grúz, Z. Phys. Chem. A 178, 138 (1937).
For molten TlCl, see, P. L. Spedding, J. Phys. Chem. 76, 1348 (1972);
P. L. Spedding, Electrochim. Acta 18, 111 (1973);
For I/I2, see, D. J. Bearcroft and N. H. Nachtrieb, J. Phys. Chem. 71, 316 (1967);
D. J. Bearcroft and N. H. Nachtrieb, J. Phys. Chem. 71, 4400 (1967);
For Br/Br2, see, I. Rubenstein, M. Bixon, and E. Gileadi, J. Phys. Chem. 84, 715 (1980);
For a very recent report of O2− shuttling in a simulation of CO2 in molten CaCO3, see, D. Corradini, F.-X. Coudert, and R. Vuilleumier, Nat. Chem. 8, 454 (2016).
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
S. Nosé, J. Chem. Phys. 81, 511 (1984).
A. R. Leach, Molecular Modelling: Principles and Applications, 2nd ed. (Pearson, Harlow, UK, 2001).
W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977).
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pedersen, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
S. Grimme, J. Comput. Chem. 27, 1787 (2006).
G. J. Janz, J. Phys. Chem. Ref. Data 17(Suppl. 2), 1309 (1988).
D. Coslovich, J.-P. Hansen, and G. Kahl, J. Chem. Phys. 134, 244514 (2011).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009.
K. Hilpert, S. Roszak, J. Saloni, M. Miller, P. Lipkowski, and J. Leszczynski, J. Phys. Chem. A 109, 1286 (2005).
J. M. van den Berg, Acta Crystallogr. 14, 1002 (1961).
A. B. Salyulev and A. M. Potapov, Z. Naturforsch. 70a, 683 (2015).
J. M. R. Clarke and C. Solomons, J. Chem. Phys. 47, 1823 (1967).
J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry (Plenum Press, New York, 1970), Vol. 1.
J. Johnston, J. Am. Chem. Soc. 31, 1010 (1909).
T. Erdey-Grúz, Transport Phenomenon in Aqueous Solutions (Halsted Press, John Wiley & Sons, Inc., New York, 1974).
A. Gierer and K. Wirtz, J. Chem. Phys. 17, 745 (1949);
A. Gierer and K. Wirtz, J. Phys. Chem. 56, 914 (1952).
B. E. Conway, J. O’M. Bockris, and H. Linton, J. Chem. Phys. 24, 834 (1956).
H. Bloom and E. Heymann, Proc. R. Soc. A 188, 392 (1947).
CRC Handbook of Chemistry and Physics, 96th ed., edited by W. M. Haynes (CRC Press, Boca Raton, FL, 2015), Sec. 4, pp. 443.
A. Klemm, “Transport properties of molten salts,” in Molten Salt Chemistry, edited byM. Blander (InterScience, New York, 1964).
A. B. Salyulev and A. M. Potapov, J. Chem. Eng. Data 60, 484 (2015).
C. A. Angell, J. Phys. Chem. 70, 2793 (1966).
S. I. Smedley, The Interpretation of Ionic Conductivity in Liquids (Plenum Press, New York, 1980).
I. Okada and R. Takagi, Z. Naturforsch. 36a, 378 (1981).
L. F. Grantham and S. J. Yosim, J. Chem. Phys. 38, 1671 (1963).

Data & Media loading...


Article metrics loading...



The phenomenon of electrical conductivity maxima of molten salts versus temperature during orthobaric (closed-vessel) conditions is further examined via simulations. Previously, in a study of molten BiCl, a new theory was offered in which the conductivity falloff at high temperatures is due not to traditional ion association, but to a rise in the activation energy for atomic ions hopping from counterion to counterion. Here this theory is further tested on two more inorganic melts which exhibit conductivity maxima: another high-conducting melt (SnCl, σ = 2.81 Ω−1 cm−1) and a low-conducting one (HgBr, σ = 4.06 × 10−4 Ω−1 cm−1). First, molecular dynamics simulations were performed and again appear successful in reproducing the maxima for both these liquids. Second, analysis of the simulated liquid structure (radial distributions, species concentrations) was performed. In the HgBr case, a very molecular liquid like water, a clear was observed in simulation when seeding the system with a HgBr+ cation and HgBr anion. The first conclusion is that the hopping mechanism offered for molten BiCl is simply the Grotthuss mechanism for conduction, applicable not just to H+ ions, but also to halide ions in post-transition-metal halide melts. Second, it is conjectured that the conductivity maximum is due to rising activation energy in network-covalent (halide-bridging) melts (BiCl, SnCl, PbCl), but possibly a falling Arrhenius prefactor (collision frequency) for molecular melts (HgBr).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd