Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/9/10.1063/1.4961731
1.
F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
2.
E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, Nature 466, 739 (2010).
http://dx.doi.org/10.1038/nature09212
3.
A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, Science 334, 195 (2011).
http://dx.doi.org/10.1126/science.1210268
4.
A. Boguslavskiy, J. Mikosch, A. Gijsbertsen, M. Spanner, S. Patchkovskii, N. Gador, M. J. J. Vrakking, and A. Stolow, Science 335, 1336 (2012).
http://dx.doi.org/10.1126/science.1212896
5.
S. R. Leone, C. W. McCurdy, J. Burgdörfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z.-H. Loh, T. Pfeifer, A. N. Pfeiffer, R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking, Nat. Photonics 8, 162 (2014).
http://dx.doi.org/10.1038/nphoton.2014.48
6.
P. M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horny, E. F. Penka, G. Grassi, O. I. Tolstikhin, J. Schneider, F. Jensen, L. B. Madsen, A. D. Bandrauk, F. Remacle, and H. J. Woerner, Science 350, 790 (2015).
http://dx.doi.org/10.1126/science.aab2160
7.
J. Breidbach and L. S. Cederbaum, Phys. Rev. Lett. 94, 033901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.033901
8.
B. Cooper and V. Averbukh, Phys. Rev. Lett. 111, 083004 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.083004
9.
F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. D. Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martin, and M. Nisoli, Science 346, 336 (2014).
http://dx.doi.org/10.1126/science.1254061
10.
M. Kling, C. Siedschlag, A. J. Verhoef, J. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz et al., Science 312, 246 (2006).
http://dx.doi.org/10.1126/science.1126259
11.
A. Cavalieri, N. Müller, and T. Uphues, Nature 449, 1029 (2007).
http://dx.doi.org/10.1038/nature06229
12.
O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, and M. Y. Ivanov, Nature 460, 972 (2009).
http://dx.doi.org/10.1038/nature08253
13.
S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carre, R. Taieb, and P. Salières, Nat. Phys. 6, 200 (2010).
http://dx.doi.org/10.1038/nphys1511
14.
M. Krueger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
http://dx.doi.org/10.1038/nature10196
15.
J. D. Biggs, Y. Zhang, D. Healion, and S. Mukamel, Proc. Natl. Acad. Sci. U. S. A. 110, 15597 (2013).
http://dx.doi.org/10.1073/pnas.1308604110
16.
D. Shafir, Y. Mairesse, D. Villeneuve, P. Corkum, and N. Dudovich, Nat. Phys. 5, 412 (2009).
http://dx.doi.org/10.1038/nphys1251
17.
P. Kraus, A. Rupenyan, and H. Wörner, Phys. Rev. Lett. 109, 233903 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.233903
18.
J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.-C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature 432, 867 (2004).
http://dx.doi.org/10.1038/nature03183
19.
A.-T. Le, R. Lucchese, S. Tonzani, T. Morishita, and C. Lin, Phys. Rev. A 80, 013401 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.013401
20.
C. Lin, A.-T. Le, Z. Chen, T. Morishita, and R. Lucchese, J. Phys. B 43, 122001 (2010).
http://dx.doi.org/10.1088/0953-4075/43/12/122001
21.
S.-I. Chu and V. I. Usachenko, Phys. Rev. A 71, 063410 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.061804
22.
S. Patchkovskii, Z. Zhao, T. Brabec, and D. Villeneuve, Phys. Rev. Lett. 97, 123003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.123003
23.
M. Awasthi, Y. V. Vanne, A. Saenz, A. Castro, and P. Decleva, Phys. Rev. A 77, 063403 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.063403
24.
L. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
25.
F. Faisal, J. Phys. B 6, L312 (1973).
http://dx.doi.org/10.1088/0022-3700/6/11/003
26.
H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
http://dx.doi.org/10.1103/PhysRevA.22.1786
27.
J. Muth-Böhm, A. Becker, and F. Faisal, Phys. Rev. Lett. 85, 2280 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2280
28.
X. M. Tong, Z. X. Zhao, and C. D. Lin, Phys. Rev. A 66, 033402 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.033402
29.
K. Mishima, M. Hayashi, J. Yi, S. Lin, H. Selzle, and E. Schlag, Phys. Rev. A 66, 033401 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.033401
30.
A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.12.005
31.
J. Kasparian, R. Sauerbrey, and S. Chin, Appl. Phys. B 71, 877 (2000).
http://dx.doi.org/10.1007/s003400000463
32.
A. Saenz, J. Phys. B 33, 4365 (2000).
http://dx.doi.org/10.1088/0953-4075/33/20/313
33.
X. Tong and C. Lin, J. Phys. B 38, 2593 (2005).
http://dx.doi.org/10.1088/0953-4075/38/15/001
34.
L. Nikolopoulos, T. K. Kjeldsen, and L. B. Madsen, Phys. Rev. A 76, 033402 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.033402
35.
X. Chu, Phys. Rev. A 82, 023407 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.023407
36.
S.-K. Son, S.-I. Chu et al., Phys. Rev. A 80, 011403 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.011403
37.
D. A. Telnov, S.-I. Chu et al., Phys. Rev. A 79, 041401 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.041401
38.
K. Yabana, T. Otobe, and J.-I. Iwata, Progress in Ultrafast Intense Laser Science Volume I (Springer, 2006), pp. 7794.
39.
M. A. Marques and E. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094449
40.
X. Chu and M. McIntyre, Phys. Rev. A 83, 013409 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.013409
41.
D. Bauer and F. Ceccherini, Opt. Express 8, 377 (2001).
http://dx.doi.org/10.1364/OE.8.000377
42.
R. Baer, D. Neuhauser, P. R. Ždánská, and N. Moiseyev, Phys. Rev. A 68, 043406 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.043406
43.
X.-M. Tong and S.-I. Chu, Phys. Rev. A 64, 013417 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.013417
44.
A. Crawford-Uranga, U. De Giovannini, E. Räsänen, M. J. T. de Oliveira, D. J. Mowbray, G. M. Nikolopoulos, E. T. Karamatskos, D. Markellos, P. Lambropoulos, S. Kurth et al., Phys. Rev. A 90, 033412 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.033412
45.
M. Hellgren, E. Räsänen, and E. K. U. Gross, Phys. Rev. A 88, 013414 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.013414
46.
U. De Giovannini, D. Varsano, M. A. L. Marques, H. Appel, E. K. U. Gross, and A. Rubio, Phys. Rev. A 85, 062515 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.062515
47.
P. Krause and H. B. Schlegel, J. Phys. Chem. Lett. 6, 2140 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00929
48.
P. Krause and H. B. Schlegel, J. Chem. Phys. 141, 174104 (2014).
http://dx.doi.org/10.1063/1.4900576
49.
C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008).
http://dx.doi.org/10.1063/1.3020336
50.
S. A. Fischer, C. J. Cramer, and N. Govind, J. Chem. Theory Comput. 11, 4294 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00473
51.
J. I. Fuks, P. Elliott, A. Rubio, and N. T. Maitra, J. Phys. Chem. Lett. 4, 735 (2013).
http://dx.doi.org/10.1021/jz302099f
52.
J. I. Fuks, K. Luo, E. D. Sandoval, and N. T. Maitra, Phys. Rev. Lett. 114, 183002 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.183002
53.
M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
http://dx.doi.org/10.1063/1.475855
54.
M. E. Casida and D. R. Salahub, J. Chem. Phys. 113, 8918 (2000).
http://dx.doi.org/10.1063/1.1319649
55.
N. T. Maitra, J. Chem. Phys. 125, 014110 (2006).
http://dx.doi.org/10.1063/1.2210471
56.
A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
http://dx.doi.org/10.1063/1.1590951
57.
E. Livshits and R. Baer, J. Phys. Chem. A 110, 8443 (2006).
http://dx.doi.org/10.1021/jp0600460
58.
R. Baer and D. Neuhauser, Phys. Rev. Lett. 94, 043002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.043002
59.
M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus et al., Comput. Phys. Commun. 181, 1477 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.04.018
60.
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
http://dx.doi.org/10.1063/1.438955
61.
T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
62.
P. Krause, J. A. Sonk, and H. B. Schlegel, J. Chem. Phys. 140, 174113 (2014).
http://dx.doi.org/10.1063/1.4874156
63.
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
64.
A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).
http://dx.doi.org/10.1021/cr0505627
65.
R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.2421
66.
R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
67.
A. Potts and W. Price, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1972), Vol. 326, pp. 181197.
68.
E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932 (2007).
http://dx.doi.org/10.1039/b617919c
69.
D. Chong, O. Gritsenko, E. Baerends et al., J. Chem. Phys. 116, 1760 (2002).
http://dx.doi.org/10.1063/1.1430255
70.
T. Stein, L. Kronik, and R. Baer, J. Am. Chem. Soc. 131, 2818 (2009).
http://dx.doi.org/10.1021/ja8087482
71.
Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004).
http://dx.doi.org/10.1063/1.1688752
72.
R. G. Fernando, M. C. Balhoff, and K. Lopata, J. Chem. Theory Comput. 11, 646 (2015).
http://dx.doi.org/10.1021/ct500943m
73.
S. Refaely-Abramson, S. Sharifzadeh, N. Govind, J. Autschbach, J. B. Neaton, R. Baer, and L. Kronik, Phys. Rev. Lett. 109, 226405 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.226405
74.
T. Stein, L. Kronik, and R. Baer, J. Chem. Phys. 131, 244119 (2009).
http://dx.doi.org/10.1063/1.3269029
75.
A. Karolewski, L. Kronik, and S. Kümmel, J. Chem. Phys. 138, 204115 (2013).
http://dx.doi.org/10.1063/1.4807325
76.
K. Davies, H. Flocard, S. Krieger, and M. Weiss, Nucl. Phys. A 342, 111 (1980).
http://dx.doi.org/10.1016/0375-9474(80)90509-6
77.
J. Theilhaber, Phys. Rev. B 46, 12990 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12990
78.
K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4484
79.
A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A. L. Marques, E. K. U. Gross, and A. Rubio, Phys. Status Solidi B 243, 2465 (2006).
http://dx.doi.org/10.1002/pssb.200642067
80.
X. Chu and S.-I. Chu, Phys. Rev. A 63, 013414 (2000).
http://dx.doi.org/10.1103/PhysRevA.63.013414
81.
K. B. Bravaya, D. Zuev, E. Epifanovsky, and A. I. Krylov, J. Chem. Phys. 138, 124106 (2013).
http://dx.doi.org/10.1063/1.4795750
82.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Courier Corporation, 2012).
83.
A. Castro, M. A. Marques, and A. Rubio, J. Chem. Phys. 121, 3425 (2004).
http://dx.doi.org/10.1063/1.1774980
84.
M. R. Provorse and C. M. Isborn, Int. J. Quantum Chem. 116, 739 (2016).
http://dx.doi.org/10.1002/qua.25096
85.
X. Li, S. M. Smith, A. N. Markevitch, D. A. Romanov, R. J. Levis, and H. B. Schlegel, Phys. Chem. Chem. Phys. 7, 233 (2005).
http://dx.doi.org/10.1039/B415849K
86.
C.-L. Cheng, J. S. Evans, and T. Van Voorhis, Phys. Rev. B 74, 155112 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155112
87.
S. Meng and E. Kaxiras, J. Chem. Phys. 129, 054110 (2008).
http://dx.doi.org/10.1063/1.2960628
88.
W. Liang, C. T. Chapman, and X. Li, J. Chem. Phys. 134, 184102 (2011).
http://dx.doi.org/10.1063/1.3589144
89.
K. Lopata and N. Govind, J. Chem. Theory Comput. 7, 1344 (2011).
http://dx.doi.org/10.1021/ct200137z
90.
K. Lopata and N. Govind, J. Chem. Theory Comput. 9, 4939 (2013).
http://dx.doi.org/10.1021/ct400569s
91.
M. R. Hermann and J. Fleck, Jr., Phys. Rev. A 38, 6000 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.6000
92.
J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A 45, 4998 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.4998
93.
J. S. Cohen, Phys. Rev. A 64, 043412 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.043412
94.
T. K. Kjeldsen and L. B. Madsen, J. Phys. B 37, 2033 (2004).
http://dx.doi.org/10.1088/0953-4075/37/10/003
95.
V. P. Majety and A. Scrinzi, Phys. Rev. Lett. 115, 103002 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.103002
96.
I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. Lett. 90, 233003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.233003
97.
D. Pavičić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, Phys. Rev. Lett. 98, 243001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.243001
98.
B. Zhang and Z. Zhao, Phys. Rev. A 82, 035401 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.035401
99.
Y. Liang, A. Talebpour, C. Chien, S. Augst, and S. Chin, J. Phys. B: At., Mol. Opt. Phys. 30, 1369 (1997).
http://dx.doi.org/10.1088/0953-4075/30/5/027
100.
X. Chu and S.-I. Chu, Phys. Rev. A 64, 063404 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.063404
101.
S.-K. Son and S.-I. Chu, Chem. Phys. 366, 91 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.09.006
102.
K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll, J. Phys. Chem. A 110, 13877 (2006).
http://dx.doi.org/10.1021/jp065887l
103.
M. Allan, E. Kloster-Jensen, and J. P. Maier, J. Chem. Soc., Faraday Trans. 73, 1417 (1977).
http://dx.doi.org/10.1039/F29777301417
104.
S. Tussupbayev, N. Govind, K. Lopata, and C. J. Cramer, J. Chem. Theory Comput. 11, 1102 (2015).
http://dx.doi.org/10.1021/ct500763y
105.
M. R. Provorse, B. F. Habenicht, and C. M. Isborn, J. Chem. Theory Comput. 11, 4791 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00559
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/9/10.1063/1.4961731
Loading
/content/aip/journal/jcp/145/9/10.1063/1.4961731
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/9/10.1063/1.4961731
2016-09-02
2016-09-27

Abstract

Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/ form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/9/1.4961731.html;jsessionid=6sqmp2QczejGKnTZ4hRJcW1E.x-aip-live-02?itemId=/content/aip/journal/jcp/145/9/10.1063/1.4961731&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/9/10.1063/1.4961731&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4961731'
Right1,Right2,Right3,