Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/9/10.1063/1.4961736
1.
R. Bhattacharyya, B. Key, H. Chen, A. S. Best, A. F. Hollenkamp, and C. P. Grey, “In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries,” Nat. Mater. 9, 504510 (2010).
http://dx.doi.org/10.1038/nmat2764
2.
S. C. Martin, J. J. Liggat, and C. E. Snape, “In situ NMR investigation into the thermal degradation and stabilisation of PAN,” Polym. Degrad. Stab. 74, 407412 (2001).
http://dx.doi.org/10.1016/S0141-3910(01)00173-2
3.
D. K. Murray, J. W. Chang, and J. F. Haw, “Conversion of methyl halides to hydrocarbons on basic zeolites: A discovery by in situ NMR,” J. Am. Chem. Soc. 115, 47324741 (1993).
http://dx.doi.org/10.1021/ja00064a037
4.
F. Castellani, B. van Rossum, A. Diehl, M. Schubert, K. Rehbein, and H. Oschkinat, “Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy,” Nature 420, 98102 (2002).
http://dx.doi.org/10.1038/nature01070
5.
A. Loquet, N. G. Sgourakis, R. Gupta, K. Giller, D. Riedel, C. Goosmann, C. Griesinger, M. Kolbe, D. Baker, S. Becker, and A. Lange, “Atomic model of the type III secretion system needle,” Nature 486, 276279 (2012).
http://dx.doi.org/10.1038/nature11079
6.
A. K. Schütz, T. Vagt, M. Huber, O. Y. Ovchinnikova, R. Cadalbert, J. Wall, P. Güntert, A. Böckmann, R. Glockshuber, and B. H. Meier, “Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation,” Angew. Chem., Int. Ed. 54, 331335 (2015).
http://dx.doi.org/10.1002/anie.201408598
7.
C. Wasmer, A. Lange, H. Van Melckebeke, A. B. Siemer, R. Riek, and B. H. Meier, “Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core,” Science 319, 15231526 (2008).
http://dx.doi.org/10.1126/science.1151839
8.
A. Krushelnitsky, D. Reichert, and K. Saalwächter, “Solid-state NMR approaches to internal dynamics of proteins: From picoseconds to microseconds and seconds,” Acc. Chem. Res. 46, 20282036 (2013).
http://dx.doi.org/10.1021/ar300292p
9.
J. R. Lewandowski, “Advances in solid-state relaxation methodology for probing site-specific protein dynamics,” Acc. Chem. Res. 46, 20182027 (2013).
http://dx.doi.org/10.1021/ar300334g
10.
P. Schanda and M. Ernst, “Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: Principles and applications to biomolecules,” Prog. Nucl. Magn. Reson. Spectrosc. 96, 146 (2016).
http://dx.doi.org/10.1016/j.pnmrs.2016.02.001
11.
V. Ladizhansky, “Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins,” Solid State Nucl. Magn. Reson. 36, 119128 (2009).
http://dx.doi.org/10.1016/j.ssnmr.2009.07.003
12.
D. D. Laws, H.-M. L. Bitter, and A. Jerschow, “Solid-state NMR spectroscopic methods in chemistry,” Angew. Chem., Int. Ed. 41, 30963129 (2002).
http://dx.doi.org/10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-X
13.
N. C. Nielsen, L. A. Strassø, and A. B. Nielsen, “Dipolar recoupling,” Top. Curr. Chem. 306, 147 (2012).
http://dx.doi.org/10.1007/128_2011_129
14.
E. R. Andrew, A. Bradbury, and R. G. Eades, “Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation,” Nature 183, 18021803 (1959).
http://dx.doi.org/10.1038/1831802a0
15.
V. Agarwal, S. Penzel, K. Szekely, R. Cadalbert, E. Testori, A. Oss, J. Past, A. Samoson, M. Ernst, A. Böckmann, and B. H. Meier, “De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy,” Angew. Chem., Int. Ed. 53, 1225312256 (2014).
http://dx.doi.org/10.1002/anie.201405730
16.
M. Bak, J. T. Rasmussen, and N. C. Nielsen, “Simpson: A general simulation program for solid-state NMR spectroscopy,” J. Magn. Reson. 147, 296330 (2000).
http://dx.doi.org/10.1006/jmre.2000.2179
17.
Z. Tošner, R. Andersen, B. Stevensson, M. Edén, N. C. Nielsen, and T. Vosegaard, “Computer-intensive simulation of solid-state NMR experiments using SIMPSON,” J. Magn. Reson. 246, 7993 (2014).
http://dx.doi.org/10.1016/j.jmr.2014.07.002
18.
M. Veshtort and R. G. Griffin, “SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments,” J. Magn. Reson. 178, 248282 (2006).
http://dx.doi.org/10.1016/j.jmr.2005.07.018
19.
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, and S. J. Glaser, “Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms,” J. Magn. Reson. 172, 296305 (2005).
http://dx.doi.org/10.1016/j.jmr.2004.11.004
20.
C. T. Kehlet, A. C. Sivertsen, M. Bjerring, T. O. Reiss, N. Khaneja, S. J. Glaser, and N. C. Nielsen, “Improving solid-state NMR dipolar recoupling by optimal control,” J. Am. Chem. Soc. 126, 1020210203 (2004).
http://dx.doi.org/10.1021/ja048786e
21.
M. Bechmann, J. Clark, and A. Sebald, “Genetic algorithms and solid state NMR pulse sequences,” J. Magn. Reson. 228, 6675 (2013).
http://dx.doi.org/10.1016/j.jmr.2012.12.015
22.
U. Haeberlen and J. S. Waugh, “Coherent averaging effects in magnetic resonance,” Phys. Rev. 175, 453467 (1968).
http://dx.doi.org/10.1103/PhysRev.175.453
23.
M. Leskes, P. K. Madhu, and S. Vega, “Floquet theory in solid-state nuclear magnetic resonance,” Prog. Nucl. Magn. Reson. Spectrosc. 57, 345380 (2010).
http://dx.doi.org/10.1016/j.pnmrs.2010.06.002
24.
I. Scholz, J. D. van Beek, and M. Ernst, “Operator-based Floquet theory in solid-state NMR,” Solid State Nucl. Magn. Reson. 37, 3959 (2010).
http://dx.doi.org/10.1016/j.ssnmr.2010.04.003
25.
O. Weintraub and S. Vega, “Floquet density matrices and effective Hamiltonians in magic-angle-spinning NMR spectroscopy,” J. Magn. Reson. A 105, 245267 (1993).
http://dx.doi.org/10.1006/jmra.1993.1279
26.
A. B. Nielsen, K. O. Tan, R. Shankar, S. Penzel, R. Cadalbert, A. Samoson, B. H. Meier, and M. Ernst, “Theoretical description of RESPIRATION-CP,” Chem. Phys. Lett. 645, 150156 (2016).
http://dx.doi.org/10.1016/j.cplett.2015.12.043
27.
K. Basse, S. K. Jain, O. Bakharev, and N. C. Nielsen, “Efficient polarization transfer between spin-1/2 and 14N nuclei in solid-state MAS NMR spectroscopy,” J. Magn. Reson. 244, 8589 (2014).
http://dx.doi.org/10.1016/j.jmr.2014.04.017
28.
S. Jain, M. Bjerring, and N. C. Nielsen, “Efficient and robust heteronuclear cross-polarization for high-speed-spinning biological solid-state NMR spectroscopy,” J. Phys. Chem. Lett. 3, 703708 (2012).
http://dx.doi.org/10.1021/jz3000905
29.
D. Wei, Ü. Akbey, B. Paaske, H. Oschkinat, B. Reif, M. Bjerring, and N. C. Nielsen, “Optimal 2H rf pulses and 2H-13C cross-polarization methods for solid-state 2H MAS NMR of perdeuterated proteins,” J. Phys. Chem. Lett. 2, 12891294 (2011).
http://dx.doi.org/10.1021/jz200511b
30.
B. Blümich and H. W. Spiess, “Quaternions as a practical tool for the evaluation of composite rotations,” J. Magn. Reson. (1969) 61, 356362 (1985).
http://dx.doi.org/10.1016/0022-2364(85)90091-5
31.
S. Vega, “Fictitious spin-1/2 operator formalism for multiple quantum NMR,” J. Chem. Phys. 68, 55185527 (1978).
http://dx.doi.org/10.1063/1.435679
32.
A. Pines, M. G. Gibby, and J. S. Waugh, “Proton-enhanced NMR of dilute spins in solids,” J. Chem. Phys. 59, 569590 (1973).
http://dx.doi.org/10.1063/1.1680061
33.
K. Takegoshi, N. Miyazawa, K. Sharma, and P. K. Madhu, “Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR,” J. Chem. Phys. 142, 134201 (2015).
http://dx.doi.org/10.1063/1.4916324
34.
W. Magnus, “On the exponential solution of differential equations for a linear operator,” Commun. Pure Appl. Math. 7, 649673 (1954).
http://dx.doi.org/10.1002/cpa.3160070404
35.
K. O. Tan, M. Rajeswari, P. K. Madhu, and M. Ernst, “Asynchronous symmetry-based sequences for homonuclear dipolar recoupling in solid-state nuclear magnetic resonance,” J. Chem. Phys. 142, 065101 (2015).
http://dx.doi.org/10.1063/1.4907275
36.
M. Bak and N. C. Nielsen, “REPULSION, a novel approach to efficient powder averaging in solid-state NMR,” J. Magn. Reson. 125, 132139 (1997).
http://dx.doi.org/10.1006/jmre.1996.1087
37.
J. T. Nielsen, M. Bjerring, M. D. Jeppesen, R. O. Pedersen, J. M. Pedersen, K. L. Hein, T. Vosegaard, T. Skrydstrup, D. E. Otzen, and N. C. Nielsen, “Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy,” Angew. Chem., Int. Ed. 48, 21182121 (2009).
http://dx.doi.org/10.1002/anie.200804198
38.
A. B. Nielsen, S. Jain, M. Ernst, B. H. Meier, and N. C. Nielsen, “Adiabatic Rotor-Echo-Short-Pulse-Irradiation mediated cross-polarization,” J. Magn. Reson. 237, 147151 (2013).
http://dx.doi.org/10.1016/j.jmr.2013.09.002
39.
S. Hediger, B. H. Meier, and R. R. Ernst, “Adiabatic passage Hartmann-Hahn cross polarization in NMR under magic angle sample spinning,” Chem. Phys. Lett. 240, 449456 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00505-X
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/9/10.1063/1.4961736
Loading
/content/aip/journal/jcp/145/9/10.1063/1.4961736
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/9/10.1063/1.4961736
2016-09-06
2016-10-01

Abstract

We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13C coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/9/1.4961736.html;jsessionid=Jjg-4XhEtLZ2yEJQakZ2WEfQ.x-aip-live-03?itemId=/content/aip/journal/jcp/145/9/10.1063/1.4961736&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/9/10.1063/1.4961736&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4961736'
Right1,Right2,Right3,