Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. D. Glowacki, M. Irimia-Vladu, M. Kaltenbrunner, J. Gasiorowski, M. S. White, U. Monkowius, G. Romanazzi, G. P. Suranna, P. Mastrorilli, T. Sekitani, S. Bauer, T. Someya, L. Torsi, and N. S. Sariciftci, Adv. Mater. 25, 1563 (2013).
M. Sytnyk, E. D. Glowacki, S. Yakunin, G. Voss, W. Schöfberger, D. Kriegner, J. Stangl, R. Trotta, C. Gollner, S. Tollabimazraehno, G. Romanazzi, Z. Bozkurt, M. Havlicek, N. S. Sariciftci, and W. Heiss, J. Am. Chem. Soc. 136, 16522 (2014).
H. Yanagisawa, J. Mizuguchi, S. Aramaki, and Y. Sakai, Jpn. J. Appl. Phys. 47, 4728 (2008).
D. Berg, C. Nielinger, W. Mader, and M. Sokolowski, Synth. Met. 159, 2599 (2009).
E. D. Glowacki, L. Leonat, M. Irimia-Vladu, R. Schwödiauer, M. Ullah, H. Sitter, S. Bauer, and N. S. Sariciftci, Appl. Phys. Lett. 101, 023305 (2012).
F. H. Chung and R. W. Scott, J. Appl. Crystallogr. 4, 506 (1971).
B. Scherwitzl, C. Röthel, A. O. F. Jones, B. Kunert, I. Salzmann, R. Resel, G. Leising, and A. Winkler, J. Phys. Chem. C 119, 20900 (2015).
P. Frank, G. Hlawacek, O. Lengyel, A. Satka, C. Teichert, and A. Winkler, Surf. Sci. 601, 2152 (2007).
G. Sauerbrey, Z. Phys. 155, 206 (1959).
B. Scherwitzl, R. Resel, and A. Winkler, J. Chem. Phys. 140, 184705 (2014).
B. Scherwitzl, W. Lukesch, A. Hirzer, J. Albering, G. Leising, R. Resel, and A. Winkler, J. Phys. Chem. C 117, 4115 (2013).
D. Käfer, C. Wöll, and G. Witte, Appl. Phys. A 95, 273 (2009).
P. A. Redhead, Vacuum 12, 203 (1962).
K. R. Paserba and A. J. Gellman, Phys. Rev. Lett. 86, 4338 (2001).
S. L. Tait, Z. Dohnalek, C. T. Campbell, and B. D. Kay, J. Chem. Phys. 122, 164708 (2005).
A. Winkler, Springer Proc. Phys. 129, 29 (2009).
M. Roos, A. Breitruck, H. E. Holster, and R. J. Behm, Phys. Chem. Phys. 12, 818 (2010).
K. J. Laidler, S. Glasstone, and H. Eyring, J. Chem. Phys. 8, 659 (1940).
D. Menzel, “Desorption phenomena,” Top. Appl. Phys. 4, 101 (1975).
D. Nečas and P. Klapetek, Open Phys. 10, 181 (2012).
A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).
Y. Wang, D. C. Alsmeyer, and R. L. McCreery, Chem. Mater. 2, 557 (1990).
A. Groß, Theoretical Surface Science (Springer, Verlag, 2009).
M. C. McMaster, S. L. M. Schroeder, and R. J. Madix, Surf. Sci. 297, 253 (1993).
A. Winkler and L. Tumbek, J. Phys. Chem. Lett. 4, 4080 (2013).
A. Winkler, Surf. Sci. 643, 124 (2016).

Data & Media loading...


Article metrics loading...



The evaporation of quinacridone from a stainless steel Knudsen cell leads to the partial decomposition of this molecule in the cell, due to its comparably high sublimation temperature. At least one additional type of molecules, namely indigo, could be detected in the effusion flux. Thermal desorption spectroscopy and atomic force microscopy have been used to study the co-deposition of these molecules on sputter-cleaned and carbon-covered silicon dioxide surfaces. Desorption of indigo appears at temperatures of about 400 K, while quinacridone desorbs at around 510 K. For quinacridone, a desorption energy of 2.1 eV and a frequency factor for desorption of 1 × 1019 s−1 were calculated, which in this magnitude is typical for large organic molecules. A fraction of the adsorbed quinacridone molecules (∼5%) decomposes during heating, nearly independent of the adsorbed amount, resulting in a surface composed of small carbon islands. The sticking coefficients of indigo and quinacridone were found to be close to unity on a carbon covered SiO surface but significantly smaller on a sputter-cleaned substrate. The reason for the latter can be attributed to insufficient energy dissipation for unfavorably oriented impinging molecules. However, due to adsorption via a hot-precursor state, the sticking probability is increased on the surface covered with carbon islands, which act as accommodation centers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd