Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/9/10.1063/1.4961749
1.
N. Bloembergen and Y. Shen, Phys. Rev. Lett. 12, 504 (1964).
http://dx.doi.org/10.1103/PhysRevLett.12.504
2.
Y. Shen and N. Bloembergen, Phys. Rev. A 137, 1787 (1965).
http://dx.doi.org/10.1103/PhysRev.137.A1787
3.
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
http://dx.doi.org/10.1126/science.1165758
4.
L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, Nat. Methods 11, 410 (2014).
http://dx.doi.org/10.1038/nmeth.2878
5.
D. W. McCamant, P. Kukura, and R. A. Mathies, J. Phys. Chem. A 107, 8208 (2003).
http://dx.doi.org/10.1021/jp030147n
6.
D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, Rev. Sci. Instrum. 75, 4971 (2004).
http://dx.doi.org/10.1063/1.1807566
7.
P. Kukura, D. W. McCamant, and R. A. Mathies, Annu. Rev. Phys. Chem. 58, 461 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104456
8.
M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
http://dx.doi.org/10.1016/0009-2614(74)85388-1
9.
D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).
http://dx.doi.org/10.1016/S0022-0728(77)80224-6
10.
M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977).
http://dx.doi.org/10.1021/ja00457a071
11.
P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601 (2008).
http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814
12.
C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, Phys. Rev. Lett. 43, 946 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.946
13.
H. Chew, D. S. Wang, and M. Kerker, J. Opt. Soc. Am. B 1, 56 (1984).
http://dx.doi.org/10.1364/JOSAB.1.000056
14.
R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, J. Phys. Chem. Lett. 2, 1199 (2011).
http://dx.doi.org/10.1021/jz200498z
15.
R. R. Frontiera, N. L. Gruenke, and R. P. Van Duyne, Nano Lett. 12, 5989 (2012).
http://dx.doi.org/10.1021/nl303488m
16.
N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. Van Duyne, Chem. Soc. Rev. 45, 2263 (2016).
17.
G. C. Schatz and R. P. Van Duyne, Handbook of Vibrational Spectroscopy (Wiley, 2002), pp. 116.
18.
U. Fano, Phys. Rev. 124, 1866 (1961).
http://dx.doi.org/10.1103/PhysRev.124.1866
19.
A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2257
20.
F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, Phys. Rev. Lett. 101, 157403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.157403
21.
X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, Phys. Rev. A 89, 43841 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.043841
22.
J. A. Parkhill, D. Rappoport, and A. Aspuru-Guzik, J. Phys. Chem. Lett. 2, 1849 (2011).
http://dx.doi.org/10.1021/jz2005573
23.
B. X. K. Chng, T. V. Dijk, R. Bhargava, and P. S. Carney, Phys. Chem. Chem. Phys. 17, 21348 (2015).
http://dx.doi.org/10.1039/C4CP05089D
24.
A. Mandal, S. Erramilli, and L. D. Ziegler, “Origin of dispersive line shapes in plasmonically enhanced femtosecond stimulated Raman spectra,” J. Phys. Chem. C (to be published).
http://dx.doi.org/10.1021/acs.jpcc.6b03303
25.
P. Roelli, C. Galland, N. Piro, and T. J. Kippenberg, Nat. Nanotechnol. 11, 164 (2016).
http://dx.doi.org/10.1038/nnano.2015.264
26.
M. K. Schmidt, R. Esteban, A. González-Tudela, G. Giedke, and J. Aizpurua, ACS Nano 10, 6291 (2016).
http://dx.doi.org/10.1021/acsnano.6b02484
27.
M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.783
28.
M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).
http://dx.doi.org/10.1002/jrs.1362
29.
S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, J. Chem. Phys. 121, 3632 (2004).
http://dx.doi.org/10.1063/1.1777214
30.
Z. Sun, X. Q. Qiu, J. Lu, D. H. Zhang, and S.-Y. Lee, J. Raman Spectrosc. 39, 1568 (2008).
http://dx.doi.org/10.1002/jrs.2040
31.
Z. Sun, J. Lu, D. H. Zhang, and S.-Y. Lee, J. Chem. Phys. 128, 144114 (2008).
http://dx.doi.org/10.1063/1.2888551
32.
B. Zhao, K. Niu, X. Li, and S.-Y. Lee, Sci. China: Chem. 54, 1989 (2011).
http://dx.doi.org/10.1007/s11426-011-4430-8
33.
S. Yoon, D. W. McCamant, P. Kukura, and R. A. Mathies, J. Chem. Phys. 122, 024505 (2005).
http://dx.doi.org/10.1063/1.1828044
34.
J. Mullin and G. C. Schatz, J. Phys. Chem. A 116, 1931 (2012).
http://dx.doi.org/10.1021/jp2087829
35.
D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, Nano Lett. 12, 1333 (2012).
http://dx.doi.org/10.1021/nl300269c
36.
G. C. Schatz, M. A. Young, and R. P. Van Duyne, Surface-Enhanced Raman Scattering - Physics and Applications, Topics in Applied Physics (Springer, 2006), Vol.103, pp. 1946.
37.
L. K. Ausman and G. C. Schatz, J. Chem. Phys. 131, 84708 (2009).
http://dx.doi.org/10.1063/1.3211969
38.
E. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. Bickelhaupt, C. Bo, P. Boerrigter, L. Cavallo, D. Chong et al., ADF2014 (SCM, 2014).
39.
W.-H. Yang and G. C. Schatz, J. Chem. Phys. 97, 3831 (1992).
http://dx.doi.org/10.1063/1.462965
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/9/10.1063/1.4961749
Loading
/content/aip/journal/jcp/145/9/10.1063/1.4961749
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/9/10.1063/1.4961749
2016-09-02
2016-09-26

Abstract

We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of , where ||2 is the absolute square of the plasmonic enhancement from the Raman pump, () is the Raman susceptibility, and is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/9/1.4961749.html;jsessionid=e5Go09T_qjxE7_jD5kXhDcQT.x-aip-live-03?itemId=/content/aip/journal/jcp/145/9/10.1063/1.4961749&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/9/10.1063/1.4961749&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4961749'
Right1,Right2,Right3,