Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/9/10.1063/1.4962062
1.
M. Fernández-Suárez and A. Y. Ting, Nat. Rev. Mol. Cell Biol. 9, 929 (2008).
http://dx.doi.org/10.1038/nrm2531
2.
H. M. Kim and B. R. Cho, Chem. Rev. 115, 5014 (2015).
http://dx.doi.org/10.1021/cr5004425
3.
M. E. Casida, Recent Advances in Density Functional Methods, Part I (World Scientific, 1995).
4.
T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory (Wiley, 2000).
5.
J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).
http://dx.doi.org/10.1021/cr9904009
6.
G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, J. Chem. Phys. 124, 094107 (2006).
http://dx.doi.org/10.1063/1.2173258
7.
S. Ten-no, F. Hirata, and S. Kato, Chem. Phys. Lett. 214, 391 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85655-8
8.
S. Ten-no, F. Hirata, and S. Kato, J. Chem. Phys. 100, 7443 (1994).
http://dx.doi.org/10.1063/1.466888
9.
H. Sato, F. Hirata, and S. Kato, J. Chem. Phys. 105, 1546 (1996).
http://dx.doi.org/10.1063/1.472015
10.
N. Minezawa, J. Chem. Phys. 138, 244101 (2013).
http://dx.doi.org/10.1063/1.4811201
11.
T. Wada, H. Nakano, and H. Sato, J. Chem. Theory Comput. 10, 4535 (2014).
http://dx.doi.org/10.1021/ct5004884
12.
D. Yokogawa, H. Sato, and S. Sakaki, J. Chem. Phys. 126, 244504 (2007).
http://dx.doi.org/10.1063/1.2742380
13.
K. Iida, D. Yokogawa, H. Sato, and S. Sakaki, Chem. Phys. Lett. 443, 264 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.06.086
14.
D. Yokogawa, Chem. Phys. Lett. 587, 113 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.09.062
15.
A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill, J. Phys. Chem. A 112, 13164 (2008).
http://dx.doi.org/10.1021/jp801738f
16.
T. Helgaker and P. Jørgensen, Theor. Chim. Acta 75, 111 (1989).
http://dx.doi.org/10.1007/BF00527713
17.
F. Furche and R. Ahlrichs, J. Chem. Phys. 117, 7433 (2002).
http://dx.doi.org/10.1063/1.1508368
18.
D. Yokogawa, H. Sato, and S. Sakaki, J. Chem. Phys. 131, 214504 (2009).
http://dx.doi.org/10.1063/1.3265856
19.
Equation (7) can be rewritten as In the derivation, we employed the following relation: The physical meanings of the first, second, third, and fourth terms in the first equation are ground state energy, excitation energy, energy change induced by orbital relaxation, and solvation free energy, respectively.
20.
A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
21.
M. Chiba, T. Tsuneda, and K. Hirao, J. Chem. Phys. 124, 144106 (2006).
http://dx.doi.org/10.1063/1.2186995
22.
R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998).
http://dx.doi.org/10.1063/1.477483
23.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
24.
H. C. Andersen and D. Chandler, J. Chem. Phys. 57, 1918 (1972).
http://dx.doi.org/10.1063/1.1678512
25.
F. Hirata and P. J. Rossky, Chem. Phys. Lett. 83, 329 (1981).
http://dx.doi.org/10.1016/0009-2614(81)85474-7
26.
W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
27.
V. Barone and M. Cossi, J. Phys. Chem. A 102, 1995 (1998).
http://dx.doi.org/10.1021/jp9716997
28.
A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113, 6378 (2009).
http://dx.doi.org/10.1021/jp810292n
29.
Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004).
http://dx.doi.org/10.1063/1.1688752
30.
T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
31.
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
http://dx.doi.org/10.1063/1.438955
32.
N. S. Bayliss and E. G. McRae, J. Phys. Chem. 58, 1006 (1954).
http://dx.doi.org/10.1021/j150521a018
33.
N. S. Bayliss and G. Wills-Johnson, Spectrochim. Acta 24, 551 (1968).
http://dx.doi.org/10.1016/0584-8539(68)80087-X
34.
G. D. Renkes and F. S. Wettack, J. Am. Chem. Soc. 91, 7514 (1969).
http://dx.doi.org/10.1021/ja01054a051
35.
M. Sun and P.-S. Song, Photochem. Photobiol. 25, 3 (1977).
http://dx.doi.org/10.1111/j.1751-1097.1977.tb07416.x
36.
C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
37.
T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
38.
R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
39.
When there is a large overlap between (absorption) peaks, the peak position should be affected by the relative intensities of the peaks. To approximate the peak position, the intensity-weighted mean value has been employed (see, for example, Ref. 40). In this study, by assuming that the band widths of the two absorption peaks are the same with each other, we approximated the absorption energy by taking oscillator strength-weighted value.
40.
M. E. Harder, D. A. Malencik, X. Yan, D. Broderick, M. Leid, S. R. Anderson, M. L. Deinzer, and M. I. Schimerlik, Biophys. Chem. 141, 1 (2009).
http://dx.doi.org/10.1016/j.bpc.2008.12.001
41.
K. B. Wiberg, Tetrahedron 24, 1083 (1968).
http://dx.doi.org/10.1016/0040-4020(68)88057-3
42.
A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).
http://dx.doi.org/10.1021/cr00088a005
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/9/10.1063/1.4962062
Loading
/content/aip/journal/jcp/145/9/10.1063/1.4962062
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/9/10.1063/1.4962062
2016-09-01
2016-09-28

Abstract

Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/9/1.4962062.html;jsessionid=9G3aS9_VRTHCMCtC0zjnanmW.x-aip-live-06?itemId=/content/aip/journal/jcp/145/9/10.1063/1.4962062&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/9/10.1063/1.4962062&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4962062'
Right1,Right2,Right3,