Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/9/10.1063/1.4962065
1.
H. Mori, Prog. Theor. Phys. 33, 423 (1965).
http://dx.doi.org/10.1143/PTP.33.423
2.
R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, London, 2001).
3.
K. Kawasaki, J. Phys. A 6, 1289 (1973).
http://dx.doi.org/10.1088/0305-4470/6/9/004
4.
R. Zwanzig, J. Stat. Phys. 9, 215 (1973).
http://dx.doi.org/10.1007/BF01008729
5.
E. Cortés, B. J. West, and K. Lindenberg, J. Chem. Phys. 82, 2708 (1985).
http://dx.doi.org/10.1063/1.448268
6.
J. Xing and K. S. Kim, J. Chem. Phys. 134, 044132 (2011).
http://dx.doi.org/10.1063/1.3530071
7.
H. A. Kramers, Physica 7, 284 (1940).
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
8.
R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980).
http://dx.doi.org/10.1063/1.440485
9.
V. I. Mel’nikov and S. V. Meshkov, J. Chem. Phys. 85, 1018 (1986).
http://dx.doi.org/10.1063/1.451844
10.
J. S. Langer, Ann. Phys. 54, 258 (1969).
http://dx.doi.org/10.1016/0003-4916(69)90153-5
11.
J. J. Ruiz-Pernía, I. Tuñón, V. Moliner, J. T. Hynes, and M. Roca, J. Am. Chem. Soc. 130, 7477 (2008).
http://dx.doi.org/10.1021/ja801156y
12.
R. P. McRae, G. K. Schenter, B. C. Garrett, Z. Svetlicic, and D. G. Truhlar, J. Chem. Phys. 115, 8460 (2001).
http://dx.doi.org/10.1063/1.1409953
13.
I. S. Tolokh, G. W. N. White, S. Goldman, and C. G. Gray, Mol. Phys. 100, 2351 (2002).
http://dx.doi.org/10.1080/00268970210124828
14.
T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.058301
15.
T. Bartsch, T. Uzer, and R. Hernandez, J. Chem. Phys. 123, 204102 (2005).
http://dx.doi.org/10.1063/1.2109827
16.
T. Bartsch, T. Uzer, J. M. Moix, and R. Hernandez, J. Chem. Phys. 124, 244310 (2006).
http://dx.doi.org/10.1063/1.2206587
17.
T. Bartsch, J. M. Moix, R. Hernandez, S. Kawai, and T. Uzer, Adv. Chem. Phys. 140, 191 (2008).
http://dx.doi.org/10.1002/9780470371572.ch4
18.
R. Hernandez, T. Uzer, and T. Bartsch, Chem. Phys. 370, 270 (2010).
http://dx.doi.org/10.1016/j.chemphys.2010.01.016
19.
S. Kawai and T. Komatsuzaki, Phys. Chem. Chem. Phys. 12, 15382 (2010).
http://dx.doi.org/10.1039/c0cp00543f
20.
G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.148301
21.
M. Niemann, T. Laubrich, E. Olbrich, and H. Kantz, Phys. Rev. E 77, 011117 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011117
22.
D. T. Schmitt and M. Schulz, Phys. Rev. E 73, 056204 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056204
23.
A. Mukhopadhyay and J. Xing, e-print arXiv:1304.4908 (2013).
24.
R. Hegger and G. Stock, J. Chem. Phys. 130, 034106 (2009).
http://dx.doi.org/10.1063/1.3058436
25.
N. Schaudinnus, B. Bastian, R. Hegger, and G. Stock, Phys. Rev. Lett. 115, 050602 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.050602
26.
H. Mori, Prog. Theor. Phys. 34, 399 (1965).
http://dx.doi.org/10.1143/PTP.34.399
27.
P. Grigolini, J. Stat. Phys. 27, 283 (1982).
http://dx.doi.org/10.1007/BF01008940
28.
P. Grigolini, Nuovo Cimento B 63, 174 (1981).
http://dx.doi.org/10.1007/BF02721425
29.
F. Marchesoni and P. Grigolini, J. Chem. Phys. 78, 6287 (1983).
http://dx.doi.org/10.1063/1.444554
30.
S. A. Adelman, J. Chem. Phys. 71, 4471 (1979).
http://dx.doi.org/10.1063/1.438200
31.
S. A. Adelman, Adv. Chem. Phys. 44, 143 (2007).
http://dx.doi.org/10.1002/9780470142639.ch2
32.
E. Pollak, H. Grabert, and P. Hänggi, J. Chem. Phys. 91, 4073 (1989).
http://dx.doi.org/10.1063/1.456837
33.
C. C. Martens, J. Chem. Phys. 116, 2516 (2002).
http://dx.doi.org/10.1063/1.1436116
34.
T. Bartsch, J. Chem. Phys. 131, 124121 (2009).
http://dx.doi.org/10.1063/1.3239473
35.
S. Kawai and T. Komatsuzaki, Phys. Chem. Chem. Phys. 13, 21217 (2011).
http://dx.doi.org/10.1039/c1cp22504a
36.
S. Kawai, J. Chem. Phys. 143, 094101 (2015).
http://dx.doi.org/10.1063/1.4929710
37.
J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 84, 1788 (1986).
http://dx.doi.org/10.1063/1.450425
38.
E. Pollak and A. M. Berezhkovskii, J. Chem. Phys. 99, 1344 (1993).
http://dx.doi.org/10.1063/1.465379
39.
G. Bussi and M. Parrinello, Phys. Rev. E 75, 056707 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.056707
40.
B. J. Berne and G. D. Harp, Adv. Chem. Phys. 17, 63 (1970).
41.
F. Takens, in Dynamical Systems and Turbulence, edited byD. A. Rand and L.-S. Young, Lecture Notes in Mathematics (Springer, Berlin, 1981), Vol. 898, pp. 366381.
42.
R. Hegger and H. Kantz, Europhys. Lett. 38, 267 (1997).
http://dx.doi.org/10.1209/epl/i1997-00236-0
43.
J. Hermans, Proc. Natl. Acad. Sci. U. S. A. 108, 3095 (2011).
http://dx.doi.org/10.1073/pnas.1019470108
44.
V. Cruz, J. Ramos, and J. Martinez-Salazar, J. Phys. Chem. B 115, 4880 (2011).
http://dx.doi.org/10.1021/jp2022727
45.
H. Jang and T. B. Woolf, J. Comput. Chem. 27, 1136 (2006).
http://dx.doi.org/10.1002/jcc.20444
46.
D. Nerukh and S. Karabasov, J. Phys. Chem. Lett. 4, 815 (2013).
http://dx.doi.org/10.1021/jz400051p
47.
A. Ljubetič, I. Urbančič, and J. Štrancar, J. Chem. Phys. 140, 084109 (2014).
http://dx.doi.org/10.1063/1.4866448
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/9/10.1063/1.4962065
Loading
/content/aip/journal/jcp/145/9/10.1063/1.4962065
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/9/10.1063/1.4962065
2016-09-01
2016-09-25

Abstract

In studying large molecular systems, insights can better be extracted by selecting a limited number of physical quantities for analysis rather than treating every atomic coordinate in detail. Some information may, however, be lost by projecting the total system onto a small number of coordinates. For such problems, the generalized Langevin equation (GLE) is shown to provide a useful framework to examine the interaction between the observed variables and their environment. Starting with the GLE obtained from the time series of the observed quantity, we perform a transformation to introduce a set of variables that describe dynamical modes existing in the environment. The introduced variables are shown to effectively recover the essential information of the total system that appeared to be lost by the projection.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/9/1.4962065.html;jsessionid=xGywI09-xZo-PpjjEx0y7LHX.x-aip-live-02?itemId=/content/aip/journal/jcp/145/9/10.1063/1.4962065&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/9/10.1063/1.4962065&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4962065'
Right1,Right2,Right3,