Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
C. Curutchet, A. Muñoz-Losa, S. Monti, J. Kongsted, G. D. Scholes, and B. Mennucci, “Electronic energy transfer in condensed phase studied by a polarizable qm/mm model,” J. Chem. Theory Comput. 5(7), 18381848 (2009).
C. Curutchet, J. Kongsted, A. Muñoz-Losa, H. Hossein-Nejad, G. D. Scholes, and B. Mennucci, “Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein,” J. Am. Chem. Soc. 133(9), 30783084 (2011).
T. Schwabe, J. M. Haugaard Olsen, K. Sneskov, J. Kongsted, and O. Christiansen, “Solvation effects on electronic transitions: Exploring the performance of advanced solvent potentials in polarizable embedding calculations,” J. Chem. Theory Comput. 7(7), 22092217 (2011).
J. Megow, M. I. S. Röhr, M. S. am Busch, T. Renger, R. Mitrić, S. Kirstein, J. P. Rabe, and V. May, “Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates,” Phys. Chem. Chem. Phys. 17, 67416747 (2015).
T. Schwabe, “Assessing molecular dynamics simulations with solvatochromism modeling,” J. Phys. Chem. B 119(33), 1069310700 (2015).
J. Adolphs and T. Renger, “How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria,” Biophys. J. 91(8), 27782797 (2006).
H. Zhu, V. May, B. Röder, M. E.-A. Madjet, and T. Renger, “The pheophorbide-a DAB dendrimer P4 in solution: MD simulations based studies of exciton states,” Chem. Phys. Lett. 444(1-3), 118124 (2007).
C. Olbrich and U. Kleinekathöfer, “Time-dependent atomistic view on the electronic relaxation in light-harvesting system II,” J. Phys. Chem. B 114(38), 1242712437 (2010).
Y. Jing, R. Zheng, H.-X. Li, and Q. Shi, “Theoretical study of the electronic-vibrational coupling in the Qy states of the photosynthetic reaction center in purple bacteria,” J. Phys. Chem. B 116(3), 11641171 (2012).
M. Hoffmann and Z. G. Soos, “Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling,” Phys. Rev. B 66, 024305 (2002).
L. Gisslén and R. Scholz, “Crystallochromy of perylene pigments: Interference between Frenkel excitons and charge-transfer states,” Phys. Rev. B 80, 115309 (2009).
J. Megow, T. Körzdörfer, T. Renger, M. Sparenberg, S. Blumstengel, F. Henneberger, and V. May, “Calculating optical absorption spectra of thin polycrystalline organic films: Structural disorder and site-dependent van der Waals interaction,” J. Phys. Chem. C 119(10), 57475751 (2015).
R. Forker and T. Fritz, “Comment on calculating optical absorption spectra of thin polycrystalline organic films: Structural disorder and site-dependent van der waals interaction,” J. Phys. Chem. C 119(32), 1881618817 (2015).
J. Megow, T. Körzdörfer, T. Renger, M. Sparenberg, S. Blumstengel, and V. May, “Reply to comment on calculating optical absorption spectra of thin polycrystalline organic films: Structural disorder and site-dependent van der waals interaction,” J. Phys. Chem. C 119(32), 1881818820 (2015).
J. N. Israelachvili, “6 - van der Waals forces,” in Intermolecular and Surface Forces, 3rd ed., edited by J. N. Israelachvili (Academic Press, San Diego, 2011), ISBN:978-0-12-375182-9, pp. 107132.
A. Stone, The Theory of Intermolecular Forces (Oxford University Press, 2013), ISBN: 9780199672394.
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132(15), 154104 (2010).
A. Tkatchenko and M. Scheffler, “Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data,” Phys. Rev. Lett. 102, 073005 (2009).
M. E. Madjet, A. Abdurahman, and T. Renger, “Intermolecular coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers,” J. Phys. Chem. B 110(34), 1726817281 (2006).
H. Zhu, V. May, and B. Röder, “Mixed quantum classical simulations of electronic excitation energy transfer: The pheophorbide-a DAB dendrimer P4 in solution,” Chem. Phys. 351(1-3), 117128 (2008).
G. Chałasiński and M. Gutowski, “Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations,” Chem. Rev. 88(6), 943962 (1988).
J. Megow, “How van der Waals interactions influence the absorption spectra of pheophorbide a complexes: A mixed quantum–classical study,” ChemPhysChem 16(14), 31013107 (2015).
It shall be noted that it has been shown first in Ref. 49 that dispersive dipole-dipole interaction at large distances (>5 nm15) due to retardation effects does not scale with r−6 as suggested by London50 but with r−7 (see also Ref. 51 for an up to date description of retardation effects). It, however, was found in Ref. 12 that the dispersive interaction for intermolecular distances smaller than 5 nm was neglectable for the investigated molecular crystal. This result can be assumed to hold for molecular assemblies with similar Q-factors (see, e.g., Refs. 4 and 22).
C. Didraga, A. Pugz̆lys, P. R. Hania, H. von Berlepsch, K. Duppen, and J. Knoester, “Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates,” J. Phys. Chem. B 108(39), 1497614985 (2004).
N. S. Bayliss, “The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution,” J. Chem. Phys. 18(3), 292296 (1950).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 Revision A.1, 2009, Gaussian Inc., Wallingford, CT, 2009.
C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 11(3), 361373 (1990).
R. L. Martin, J. Chem. Phys. 118, 4775 (2003).
For a number of excited states, the Mulliken analysis of the NTOs overestimated the effective dipole moment due to the obtained transition partial charges. In those cases, the transition partial charges have been normalized with respect to the calculated oscillator strengths.
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chem. Phys. Lett. 393(13), 5157 (2004).
P. Elliott, S. Goldson, C. Canahui, and N. T. Maitra, “Perspectives on double-excitations in {TDDFT},” Chem. Phys. 391(1), 110119 (2011).
In Ref. 52, excited to excited-state-oscillator strengths have been computed using the configuration interaction singles (CIS) method. There, it also was assumed that the neglection of double excitations within CIS resulted in the underestimation of higher excited states transition dipole moments. In linear response TDDFT those double excitations are not treated either.32
I. A. Mikhailov, S. Tafur, and A. E. Masunov, “Double excitations and state-to-state transition dipoles in π-π* excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods,” Phys. Rev. A 77, 012510 (2008).
W. Kuhn, “Ber die gesamtstärke der von einem zustande ausgehenden absorptionslinien,” Z. Phys. 33(1), 408412 (1925).
F. Reiche and W. Thomas, “Über die zahl der dispersionelektronen die einem stationären zustand zugeordnet sind,” Z. Phys. 34, 510525 (1925).
P. K. Nayak and N. Periasamy, “Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using ‘solvation’ model and DFT,” Org. Electron. 10(7), 13961400 (2009).
F. Furche and D. Rappoport, “Density functional methods for excited states: Equilibrium structure and electronic spectra III,” in Computational Photochemistry, Theoretical and Computational Chemistry Vol. 16, edited by M. Olivucci (Elsevier, 2005), pp. 93128.
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular dynamics with NAMD,” J. Comput. Chem. 26, 17811802 (2005).
D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, K. M. Merz, B. Wang, D. A. Pearlman, M. Crowley, S. Brozell, V. Tsui, H. Gohlke, J. Mongan, V. Hornak, G. Cui, P. Beroza, C. Schafmeister, J. W. Caldwell, W. S. Ross, and P. A. Kollman, AMBER 8 (University of California, San Francisco, CA, 2004).
J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and testing of a general amber force field,” J. Comput. Chem. 25(9), 11571174 (2004).
It was checked that the results are similar when for different PTCDI molecules interacting with their neighbors using a smaller number of excited states. The final results have been obtained for a single molecule interacting with its neighbors since the sum over states expressions become rather expensive in computation time, the more higher excited states are treated.
The calculation of the ground state energy was carried out for a PTCDI dimer and a PTCDI monomer using the CAM-B3LYP functional and a 6311(d,p) basis set. Due to the significant contribution of dispersion to the overall ground state energy shifts, the D3 dispersion correction by Grimme and co-workers17 was utilized. The interaction energy was calculated using the formula ΔE(int) = E(dim) − 2E(mono). The other components of the interaction energy (the orbital overlap and Pauli repulsion cf. Ref. 53) can be neglected for the non-bonded PTCDI dimer (orbital overlap is neglectable). One can thus rewrite ΔE(int) = ΔE(el,ind,disp). Here, ΔE(el,ind,disp) is the overall interaction energy of the molecules due to electrostatics, inductive polarization, and dispersion.
K. Sneskov, T. Schwabe, O. Christiansen, and J. Kongsted, “Scrutinizing the effects of polarization in qm/mm excited state calculations,” Phys. Chem. Chem. Phys. 13, 1855118560 (2011).
C. Daday, C. Curutchet, A. Sinicropi, B. Mennucci, and C. Filippi, “Chromophore–protein coupling beyond nonpolarizable models: Understanding absorption in green fluorescent protein,” J. Chem. Theory Comput. 11(10), 48254839 (2015).
A. D. McLachlan, “Retarded dispersion forces between molecules,” Proc. R. Soc. London, Ser. A 271(1346), 387401 (1963).
C. Zhu, A. Dalgarno, S. G. Porsev, and A. Derevianko, “Dipole polarizabilities of excited alkali-metal atoms and long-range interactions of ground- and excited-state alkali-metal atoms with helium atoms,” Phys. Rev. A 70, 032722 (2004).
S. Corni, R. Cammi, B. Mennucci, and J. Tomasi, “Electronic excitation energies of molecules in solution within continuum solvation models: Investigating the discrepancy between state-specific and linear-response methods,” J. Chem. Phys. 123(13), 134512 (2005).
H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73, 360372 (1948).
F. London, “Zur theorie und systematik der molekularkräfte,” Z. Phys. 63(3-4), 245279 (1930).
A. Salam, Molecular Quantum Electrodynamics : Long-range Intermolecular Interactions (Wiley, Hoboken, N.J., 2010), ISBN: 9780470259306, (cloth). Formerly CIP.
S. Klinkusch and T. Klamroth, “Simulations of pump-probe excitations of electronic wave packets for a large quasi-rigid molecular system by means of an extension to the time-dependent configuration interaction singles method,” J. Theor. Comput. Chem. 12(03), 1350005 (2013).
M. von Hopffgarten and G. Frenking, “Energy decomposition analysis,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2(1), 4362 (2012).

Data & Media loading...


Article metrics loading...



The gas-to-crystal-shift denotes the shift of electronic excitation energies, i.e., the difference between ground and excited state energies, for a molecule transferred from the gas to the bulk phase. The contributions to the gas-to-crystal-shift comprise electrostatic as well as inductive polarization and dispersive energy shifts of the molecular excitation energies due to interaction with environmental molecules. For the example of 3,4,9,10-perylene-tetracarboxylic-diimide () bulk, the contributions to the gas-to-crystal shift are investigated. In the present work, electrostatic interaction is calculated via Coulomb interaction of partial charges while inductive and dispersive interactions are obtained using respective sum over states expressions. The coupling of higher transition densities for the first 4500 excited states of was computed using transition partial charges based on an atomistic model of bulk obtained from molecular dynamics simulations. As a result it is concluded that for the investigated model system of a crystal, the gas to crystal shift is dominated by dispersive interaction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd