Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/146/5/10.1063/1.4961458
1.
C. G. N. Lee, K. J. Kanarik, and R. A. Gottscho, J. Phys. D: Appl. Phys. 47, 273001 (2014).
http://dx.doi.org/10.1088/0022-3727/47/27/273001
2.
V. M. Donnelly and A. Kornblit, J. Vac. Sci. Technol., A 31, 050825 (2013).
http://dx.doi.org/10.1116/1.4819316
3.
K. J. Kanarik, S. Tan, J. Holland, A. Eppler, V. Vahedi, J. Marks, and R. A. Gottscho, Solid State Technol. 56, 1417 (2013).
4.
K. J. Kanarik, T. Lill, E. A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, and R. A. Gottscho, J. Vac. Sci. Technol., A 33, 020802 (2015).
http://dx.doi.org/10.1116/1.4913379
5.
G. S. Oehrlein, D. Metzler, and C. Li, ECS J. Solid State Sci. Technol. 4, N5041N5053 (2015).
http://dx.doi.org/10.1149/2.0061506jss
6.
C. T. Carver, J. J. Plombon, P. E. Romero, S. Suri, T. A. Tronic, and R. B. Turkot, ECS J. Solid State Sci. Technol. 4, N5005N5009 (2015).
http://dx.doi.org/10.1149/2.0021506jss
7.
S. U. Engelmann, R. L. Bruce, M. Nakamura, D. Metzler, S. G. Walton, and E. A. Joseph, ECS J. Solid State Sci. Technol. 4, N5054N5060 (2015).
http://dx.doi.org/10.1149/2.0101506jss
8.
S. M. George, Chem. Rev. 110, 111131 (2010).
http://dx.doi.org/10.1021/cr900056b
9.
R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
10.
M. Leskelä and M. Ritala, Thin Solid Films 409, 138146 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00117-7
11.
M. Leskelä and M. Ritala, Angew. Chem., Int. Ed. 42, 55485554 (2003).
http://dx.doi.org/10.1002/anie.200301652
12.
T. Faraz, F. Roozeboom, H. C. M. Knoops, and W. M. M. Kessels, ECS J. Solid State Sci. Technol. 4, N5023N5032 (2015).
http://dx.doi.org/10.1149/2.0051506jss
13.
F. Roozeboom, F. van den Bruele, Y. Creyghton, P. Poodt, and W. M. M. Kessels, ECS J. Solid State Sci. Technol. 4, N5067N5076 (2015).
http://dx.doi.org/10.1149/2.0111506jss
14.
D. Metzler, R. Bruce, S. Engelmann, E. A. Joseph, and G. S. Oehrlein, J. Vac. Sci. Technol., A 32, 020603 (2014).
http://dx.doi.org/10.1116/1.4843575
15.
D. Metzler, C. Li, S. Engelmann, R. Bruce, E. Joseph, and G. S. Oehrlein, J. Vac. Sci. Technol., A 34, 01B101 (2016).
http://dx.doi.org/10.1116/1.4935462
16.
D. Metzler, K. Uppireddi, R. L. Bruce, H. Miyazoe, Y. Zhu, W. Price, E. S. Sikorski, L. Chen, S. Engelmann, E. A. Joseph, and G. S. Oehrlein, J. Vac. Sci. Technol., A 34, 01B102 (2016).
http://dx.doi.org/10.1116/1.4935460
17.
S. Engelmann, R. L. Bruce, T. Kwon, R. Phaneuf, G. S. Oehrlein, Y. C. Bae, C. Andes, D. Graves, D. Nest, E. A. Hudson, P. Lazzeri, E. Lacob, and M. Anderle, J. Vac. Sci. Technol., B 25, 13531364 (2007).
http://dx.doi.org/10.1116/1.2759935
18.
T. E. F. M. Standaert, P. J. Matsuo, S. D. Allen, G. S. Oehrlein, and T. J. Dalton, J. Vac. Sci. Technol., A 17, 741748 (1999).
http://dx.doi.org/10.1116/1.581643
19.
X. F. Hua, X. Wang, D. Fuentevilla, G. S. Oehrlein, F. G. Celii, and K. H. R. Kirmse, J. Vac. Sci. Technol., A 21, 17081716 (2003).
http://dx.doi.org/10.1116/1.1598973
20.
H. G. Tompkins, A User’s Guide To Ellipsometry (Dover Publications Inc., Mineola, 1993).
21.
T. E. F. M. Standaert, M. Schaepkens, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, J. Vac. Sci. Technol., A 16, 239249 (1998).
http://dx.doi.org/10.1116/1.580978
22.
S. W. Robey and G. S. Oehrlein, Surf. Sci. 210, 429448 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90604-3
23.
M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, J. Vac. Sci. Technol., A 17, 2637 (1999).
http://dx.doi.org/10.1116/1.582108
24.
T. E. F. M. Standaert, C. Hedlund, E. A. Joseph, G. S. Oehrlein, and T. J. Dalton, J. Vac. Sci. Technol., A 22, 5360 (2004).
http://dx.doi.org/10.1116/1.1626642
25.
D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS (Cambridge University Press, Cambridge, 1998).
26.
E. A. J. Bartis, D. B. Graves, J. Seog, and G. S. Oehrlein, J. Phys. D: Appl. Phys. 46, 312002 (2013).
http://dx.doi.org/10.1088/0022-3727/46/31/312002
27.
F. Weilnboeck, R. L. Bruce, S. Engelmann, G. S. Oehrlein, D. Nest, T. Y. Chung, D. Graves, M. Li, D. Wang, C. Andes, and E. A. Hudson, J. Vac. Sci. Technol., B 28, 9931004 (2010).
http://dx.doi.org/10.1116/1.3484249
28.
R. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G. S. Oehrlein, B. K. Long, C. G. Willson, and A. Alizadeh, J. Vac. Sci. Technol., B 29, 041604 (2011).
http://dx.doi.org/10.1116/1.3607604
29.
N. R. Rueger, J. J. Beulens, M. Schaepkens, M. F. Doemling, J. M. Mirza, T. E. F. M. Standaert, and G. S. Oehrlein, J. Vac. Sci. Technol., A 15, 18811889 (1997).
http://dx.doi.org/10.1116/1.580655
30.
Y. Y. Tu, T. J. Chuang, and H. F. Winters, Phys. Rev. B 23, 823835 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.823
31.
J. W. Butterbaugh, D. C. Gray, and H. H. Sawin, J. Vac. Sci. Technol., B 9, 14611470 (1991).
http://dx.doi.org/10.1116/1.585451
32.
D. Humbird and D. B. Graves, J. Appl. Phys. 96, 2466 (2004).
http://dx.doi.org/10.1063/1.1769602
33.
G. S. Oehrlein, Y. Zhang, D. Vender, and M. Haverlag, J. Vac. Sci. Technol., A 12, 323332 (1994).
http://dx.doi.org/10.1116/1.578876
34.
Y. Hikosaka, M. Nakamura, and H. Sugai, Jpn. J. Appl. Phys. 1(33), 21572163 (1994).
http://dx.doi.org/10.1143/JJAP.33.2157
35.
N. R. Rueger, M. F. Doemling, M. Schaepkens, J. J. Beulens, T. E. F. M. Standaert, and G. S. Oehrlein, J. Vac. Sci. Technol., A 17, 24922502 (1999).
http://dx.doi.org/10.1116/1.581987
36.
S. Veprek, C. L. Wang, and M. G. J. Veprek-Heijman, J. Vac. Sci. Technol., A 26, 313320 (2008).
http://dx.doi.org/10.1116/1.2884731
37.
M. J. Barela, H. M. Anderson, and G. S. Oehrlein, J. Vac. Sci. Technol., A 23, 408416 (2005).
http://dx.doi.org/10.1116/1.1874173
38.
B. J. Kim, S. Chung, and S. M. Cho, Appl. Surf. Sci. 187, 124129 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00826-1
39.
Y. Aoyagi, K. Shinmura, K. Kawasaki, T. Tanaka, K. Gamo, S. Namba, and I. Nakamoto, Appl. Phys. Lett. 60, 968 (1992).
http://dx.doi.org/10.1063/1.106477
40.
S.-D. Park, K.-S. Min, B.-Y. Yoon, D.-H. Lee, and G.-Y. Yeom, Jpn. J. Appl. Phys. 44, 389393 (2005).
http://dx.doi.org/10.1143/JJAP.44.389
41.
T. Matsuura, J. Murota, Y. Sawada, and T. Ohmi, Appl. Phys. Lett. 63, 28032805 (1993).
http://dx.doi.org/10.1063/1.110340
42.
K. Takahashi and K. Ono, J. Vac. Sci. Technol., A 24, 437443 (2006).
http://dx.doi.org/10.1116/1.2187997
43.
M. Fukasawa, Y. Nakakubo, A. Matsuda, Y. Takao, K. Eriguchi, K. Ono, M. Minami, F. Uesawa, and T. Tatsumi, J. Vac. Sci. Technol., A 29, 041301 (2011).
http://dx.doi.org/10.1116/1.3596606
44.
N. Kuboi, T. Tatsumi, T. Kinoshita, T. Shigetoshi, M. Fukasawa, J. Komachi, and H. Ansai, J. Vac. Sci. Technol., A 33, 061308 (2015).
http://dx.doi.org/10.1116/1.4931782
45.
C. J. Mogab, A. C. Adams, and D. L. Flamm, J. Appl. Phys. 49, 37963803 (1978).
http://dx.doi.org/10.1063/1.325382
46.
H. F. Winters and J. W. Coburn, Surf. Sci. Rep. 14, 161269 (1992).
http://dx.doi.org/10.1016/0167-5729(92)90009-Z
47.
J. W. Coburn and H. F. Winters, Appl. Surf. Sci. 22-23, 6371 (1985).
http://dx.doi.org/10.1016/0169-4332(85)90037-6
48.
H. F. Winters and J. W. Coburn, J. Vac. Sci. Technol., B 3, 13761383 (1985).
http://dx.doi.org/10.1116/1.582996
49.
H. F. Winters and I. C. Plumb, J. Vac. Sci. Technol., B 9, 197207 (1991).
http://dx.doi.org/10.1116/1.585593
50.
C. Cardinaud and G. Turban, Appl. Surf. Sci. 45, 109120 (1990).
http://dx.doi.org/10.1016/0169-4332(90)90061-4
51.
G. S. Oehrlein and H. L. Williams, J. Appl. Phys. 62, 662672 (1987).
http://dx.doi.org/10.1063/1.339766
52.
G. S. Oehrlein, Y. Zhang, D. Vender, and O. Joubert, J. Vac. Sci. Technol., A 12, 333344 (1994).
http://dx.doi.org/10.1116/1.578877
53.
J. P. Simko and G. S. Oehrlein, J. Electrochem. Soc. 138, 27482752 (1991).
http://dx.doi.org/10.1149/1.2086048
54.
C. F. Abrams and D. B. Graves, J. Appl. Phys. 86, 5938 (1999).
http://dx.doi.org/10.1063/1.371637
55.
D. C. Gray, H. H. Sawin, and J. W. Butterbaugh, J. Vac. Sci. Technol., A 9, 779785 (1991).
http://dx.doi.org/10.1116/1.577361
56.
M. E. Barone and D. B. Graves, J. Appl. Phys. 77, 12631274 (1995).
http://dx.doi.org/10.1063/1.358928
57.
M. Kawakami, D. Metzler, C. Li, and G. S. Oehrlein, J. Vac. Sci. Technol., A 34, 040603 (2016).
http://dx.doi.org/10.1116/1.4949260
http://aip.metastore.ingenta.com/content/aip/journal/jcp/146/5/10.1063/1.4961458
Loading
/content/aip/journal/jcp/146/5/10.1063/1.4961458
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/146/5/10.1063/1.4961458
2016-09-08
2016-09-28

Abstract

With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (CF and CHF) and synchronized, plasma-based Ar+ ion bombardment [D. Metzler , J. Vac. Sci. Technol., A , 020603 (2014) and D. Metzler , J. Vac. Sci. Technol., A , 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20–30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF has a lower FC deposition yield for both SiO and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to CF. The thickness of deposited FC layers using CHF is found to be greater for Si than for SiO. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/146/5/1.4961458.html;jsessionid=x-KKu5gp3yoaX30lToPc8cW6.x-aip-live-03?itemId=/content/aip/journal/jcp/146/5/10.1063/1.4961458&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/146/5/10.1063/1.4961458&pageURL=http://scitation.aip.org/content/aip/journal/jcp/146/5/10.1063/1.4961458'
Right1,Right2,Right3,