Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/146/5/10.1063/1.4961460
1.
S. Tasch, C. Brandstätter, F. Meghdadi, G. Leising, G. Froyer, and L. Athouel, Adv. Mater. 9, 33 (1997).
http://dx.doi.org/10.1002/adma.19970090105
2.
C. Simbrunner, G. Hernandez-Sosa, E. Baumgartner, G. Hesser, J. Roither, W. Heiss, and H. Sitter, Appl. Phys. Lett. 94, 073505 (2009).
http://dx.doi.org/10.1063/1.3086295
3.
H. T. Yi, M. M. Payne, J. E. Anthony, and V. Podzorov, Nat. Commun. 3, 1259 (2012).
http://dx.doi.org/10.1038/ncomms2263
4.
B. Schmidt-Hansberg, M. Sanyal, M. F. G. Klein, M. Pfaff, N. Schnabel, S. Jaiser, A. Vorobiev, E. Müller, A. Colsmann, P. Scharfer, D. Gerthsen, U. Lemmer, E. Barrena, and W. Schabel, ACS Nano 5, 8579 (2011).
http://dx.doi.org/10.1021/nn2036279
5.
Z. Li, H. C. Wong, Z. Huang, H. Zhong, C. H. Tan, W. C. Tsoi, J. S. Kim, J. R. Durrant, and J. T. Cabral, Nat. Commun. 4, 2227 (2013).
http://dx.doi.org/10.1038/ncomms3227
6.
J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep. Prog. Phys. 47, 399 (1984).
http://dx.doi.org/10.1088/0034-4885/47/4/002
7.
H. Brune, Surf. Sci. Rep. 31, 125 (1998).
http://dx.doi.org/10.1016/S0167-5729(99)80001-6
8.
J. W. Evans, P. A. Thiel, and M. C. Bartelt, Surf. Sci. Rep. 61, 1 (2006).
http://dx.doi.org/10.1016/j.surfrep.2005.08.004
9.
G. Renaud, R. Lazzari, C. Revenant, A. Barbier, M. Noblet, O. Ulrich, F. Leroy, J. Jupille, Y. Borensztein, C. R. Henry, J.-P. Deville, F. Scheurer, J. Mane-Mane, and O. Fruchart, Science 300, 1416 (2003).
http://dx.doi.org/10.1126/science.1082146
10.
J. D. Ferguson, G. Arikan, D. S. Dale, A. R. Woll, and J. D. Brock, Phys. Rev. Lett. 103, 256103 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.256103
11.
S. Bommel, N. Kleppmann, C. Weber, H. Spranger, P. Schäfer, J. Novak, S. V. Roth, F. Schreiber, S. H. L. Klapp, and S. Kowarik, Nat. Commun. 5, 5388 (2014).
http://dx.doi.org/10.1038/ncomms6388
12.
C. Frank, J. Novák, R. Banerjee, A. Gerlach, F. Schreiber, A. Vorobiev, and S. Kowarik, Phys. Rev. B 90, 045410 (2014).
http://dx.doi.org/10.1103/physrevb.90.045410
13.
M. Ruge, F. Golks, J. Zegenhagen, O. M. Magnussen, and J. Stettner, Phys. Rev. Lett. 112, 055503 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.055503
14.
B. Krause, F. Schreiber, H. Dosch, A. Pimpinelli, and O. H. Seeck, Europhys. Lett. 65, 372 (2004).
http://dx.doi.org/10.1209/epl/i2003-10090-6
15.
A. C. Mayer, R. Ruiz, H. Zhou, R. L. Headrick, A. Kazimirov, and G. G. Malliaras, Phys. Rev. B 73, 205307 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205307
16.
S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, L. Cavalcanti, and O. Konovalov, Phys. Rev. Lett. 96, 125504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.125504
17.
A. Amassian, T. V. Desai, S. Kowarik, S. Hong, A. R. Woll, G. G. Malliaras, F. Schreiber, and J. R. Engstrom, J. Chem. Phys. 130, 124701 (2009).
http://dx.doi.org/10.1063/1.3088835
18.
S. Kowarik, A. Gerlach, M. W. A. Skoda, S. Sellner, and F. Schreiber, Eur. Phys. J.: Spec. Top. 167, 11 (2009).
http://dx.doi.org/10.1140/epjst/e2009-00930-y
19.
S. Y. An, K. Ahn, D. Y. Kim, H.-H. Lee, J. H. Cho, and D. R. Lee, J. Chem. Phys. 140, 154702 (2014).
http://dx.doi.org/10.1063/1.4870927
20.
T. N. Krauss, E. Barrena, X. N. Zhang, D. G. de Oteyza, J. Major, V. Dehm, F. Würthner, L. P. Cavalcanti, and H. Dosch, Langmuir 24, 12742 (2008).
http://dx.doi.org/10.1021/la8030182
21.
T. N. Krauss, E. Barrena, D. G. de Oteyza, X. N. Zhang, V. Dehm, F. Wu, and H. Dosch, J. Phys. Chem. C 113, 4502 (2009).
http://dx.doi.org/10.1021/jp808037w
22.
P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, Appl. Phys. Lett. 80, 2517 (2002).
http://dx.doi.org/10.1063/1.1467706
23.
R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva Filho, J. L. Brédas, L. L. Miller, K. R. Mann, and C. D. Frisbie, J. Phys. Chem. B 108, 19281 (2004).
http://dx.doi.org/10.1021/jp046246y
24.
A. L. Briseno, S. C. B. Mannsfeld, C. Reese, J. M. Hancock, Y. Xiong, S. A. Jenekhe, Z. Bao, and Y. Xia, Nano Lett. 7, 2847 (2007).
http://dx.doi.org/10.1021/nl071495u
25.
S. Karak, V. S. Reddy, S. K. Ray, and A. Dhar, Org. Electron. 10, 1006 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.04.006
26.
E. R. Kish, R. K. Nahm, A. R. Woll, and J. R. Engstrom, J. Phys. Chem. C 120, 6165 (2016).
http://dx.doi.org/10.1021/acs.jpcc.6b01717
27.
L. Tumbek and A. Winkler, Surf. Sci. 606, L55 (2012).
http://dx.doi.org/10.1016/j.susc.2012.03.018
28.
A. Winkler and L. Tumbek, J. Phys. Chem. Lett. 4, 4080 (2013).
http://dx.doi.org/10.1021/jz402301v
29.
A. Buffet, A. Rothkirch, R. Döhrmann, V. Körstgens, M. M. Abul Kashem, J. Perlich, G. Herzog, M. Schwartzkopf, R. Gehrke, P. Müller-Buschbaum, and S. V. Roth, J. Synchrotron Radiat. 19, 647 (2012).
http://dx.doi.org/10.1107/S0909049512016895
30.
G. Santoro, A. Buffet, R. Döhrmann, S. Yu, V. Körstgens, P. Müller-Buschbaum, U. Gedde, M. Hedenqvist, and S. V. Roth, Rev. Sci. Instrum. 85, 043901 (2014).
http://dx.doi.org/10.1063/1.4869784
31.
T. V. Desai, E. R. Kish, A. R. Woll, and J. R. Engstrom, J. Phys. Chem. C 115, 18221 (2011).
http://dx.doi.org/10.1021/jp204495u
32.
T. V. Desai, A. R. Woll, F. Schreiber, and J. R. Engstrom, J. Phys. Chem. C 114, 20120 (2010).
http://dx.doi.org/10.1021/jp107518f
33.
M. Sparenberg, A. Zykov, P. Beyer, L. Pithan, C. Weber, Y. Garmshausen, F. Carlà, S. Hecht, S. Blumstengel, F. Henneberger, and S. Kowarik, Phys. Chem. Chem. Phys. 16, 26084 (2014).
http://dx.doi.org/10.1039/C4CP04048A
34.
P. Beyer, T. Breuer, S. Ndiaye, A. Zykov, A. Viertel, M. Gensler, J. P. Rabe, S. Hecht, G. Witte, and S. Kowarik, ACS Appl. Mater. Interfaces 6, 21484 (2014).
http://dx.doi.org/10.1021/am506465b
35.
V. I. Trofimov and V. G. Mokerov, Thin Solid Films 428, 66 (2003).
http://dx.doi.org/10.1016/S0040-6090(02)01272-5
36.
A. R. Woll, T. V. Desai, and J. R. Engstrom, Phys. Rev. B 84, 075479 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075479
37.
M. Schwartzkopf, A. Buffet, V. Körstgens, E. Metwalli, K. Schlage, G. Benecke, J. Perlich, M. Rawolle, A. Rothkirch, B. Heidmann, G. Herzog, P. Müller-Buschbaum, R. Röhlsberger, R. Gehrke, N. Stribeck, and S. V. Roth, Nanoscale 5, 5053 (2013).
http://dx.doi.org/10.1039/c3nr34216f
38.
C. Durniak, M. Ganeva, G. Pospelov, W. van Herck, and J. Wuttke, http://www.bornagainproject.org, 2015.
39.
P. Hahn, J. Clabes, and M. Henzler, J. Appl. Phys. 51, 2079 (1980).
http://dx.doi.org/10.1063/1.327877
40.
T. Potocar, S. Lorbek, D. Nabok, Q. Shen, L. Tumbek, G. Hlawacek, P. Puschnig, C. Ambrosch-Draxl, C. Teichert, and A. Winkler, Phys. Rev. B 83, 075423 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.075423
41.
S. Pratontep, M. Brinkmann, F. Nüesch, and L. Zuppiroli, Phys. Rev. B 69, 165201 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165201
42.
J. Yang, T. Wang, H. Wang, F. Zhu, G. Li, and D. Yan, J. Phys. Chem. B 112, 7816 (2008).
http://dx.doi.org/10.1021/jp711455u
43.
P. R. Ribič, V. Kalihari, C. D. Frisbie, and G. Bratina, Phys. Rev. B 80, 115307 (2009).
http://dx.doi.org/10.1103/physrevb.80.115307
44.
S. Lorbek, G. Hlawacek, and C. Teichert, Eur. Phys. J.: Appl. Phys. 55, 23902 (2011).
http://dx.doi.org/10.1051/epjap/2011100428
45.
A. S. Killampalli, T. W. Schroeder, and J. R. Engstrom, Appl. Phys. Lett. 87, 033110 (2005).
http://dx.doi.org/10.1063/1.1990254
46.
B. Stadlober, U. Haas, H. Maresch, and A. Haase, Phys. Rev. B 74, 165302 (2006).
http://dx.doi.org/10.1103/physrevb.74.165302
47.
E. R. Kish, T. V. Desai, D. R. Greer, A. R. Woll, and J. R. Engstrom, J. Vac. Sci. Technol. A 33, 031511 (2015).
http://dx.doi.org/10.1116/1.4916885
48.
R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund, A. Kahn, F. Family, and G. Scoles, Phys. Rev. Lett. 91, 136102 (2003).
http://dx.doi.org/10.1103/physrevlett.91.136102
49.
M. Campione, S. Caprioli, M. Moret, and A. Sassella, J. Phys. Chem. C 111, 12741 (2007).
http://dx.doi.org/10.1021/jp068616j
50.
H. Brune, G. S. Bales, J. Jacobsen, C. Boragno, and K. Kern, Phys. Rev. B 60, 5991 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.5991
51.
A. Picone, M. Riva, G. Fratesi, A. Brambilla, G. Bussetti, M. Finazzi, L. Duò, and F. Ciccacci, Phys. Rev. Lett. 113, 046102 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.046102
52.
J. R. Morales-Cifuentes, T. L. Einstein, and A. Pimpinelli, Phys. Rev. Lett. 113, 246101 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.246101
53.
A. Winkler, Surf. Sci. 652, 367 (2016).
http://dx.doi.org/10.1016/j.susc.2016.02.015
http://aip.metastore.ingenta.com/content/aip/journal/jcp/146/5/10.1063/1.4961460
Loading
/content/aip/journal/jcp/146/5/10.1063/1.4961460
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/146/5/10.1063/1.4961460
2016-09-08
2016-09-30

Abstract

We study nucleation and multilayer growth of the perylene derivative PTCDI-C and find a persistent layer-by-layer growth, transformation of island shapes, and an enhancement of molecular diffusivity in upper monolayers (MLs). These findings result from the evaluation of the ML-dependent island densities, obtained by real-time grazing incidence small angle X-ray scattering measurements and simultaneous X-ray growth oscillations. Complementary atomic force microscopy snapshots of different growth stages agree quantitatively with both X-ray techniques. The rate and temperature-dependent island density is analyzed using different mean-field nucleation models. Both a diffusion limited aggregation and an attachment limited aggregation model yield in the first two MLs the same critical nucleus size , similar surface diffusion attempt frequencies in the 1019-1020 s−1 range, and a decrease of the diffusion barrier in the 2nd ML by 140 meV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/146/5/1.4961460.html;jsessionid=qc9-TU00TSnKYjXjJeJ_uiUg.x-aip-live-02?itemId=/content/aip/journal/jcp/146/5/10.1063/1.4961460&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/146/5/10.1063/1.4961460&pageURL=http://scitation.aip.org/content/aip/journal/jcp/146/5/10.1063/1.4961460'
Right1,Right2,Right3,