1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Additivity for unital qubit channels
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/43/10/10.1063/1.1500791
1.
1.Amosov, G. G. and Holevo, A. S. , “On the multiplicativity conjecture for quantum channels,” lanl:math-ph/0103015.
2.
2.Amosov, G. G. , Holevo, A. S. , and Werner, R. F. , “On Some Additivity Problems in Quantum Information Theory,” Probl. Inf. Transm. 36, 305313 (2000).
3.
3.Bennett, C. H., Fuchs, C. A., and Smolin, J. A., “Entanglement-Enhanced Classical Communication on a Noisy Quantum Channel,” in Quantum Communication, Computing and Measurement, edited by O. Hirota, A. S. Holevo, and C. M. Caves (Plenum, New York, 1997), pp. 79–88.
4.
4.Bruss, D. , Faoro, L. , Macchiavello, C. , and Palma, G. M. , “Quantum entanglement and classical communication through a depolarising channel,” J. Mod. Opt. 47, 325332 (2000).
5.
5.Epstein, H. , “Remarks on two theorems of E. Lieb,” Commun. Math. Phys. 31, 317325 (1973).
6.
6.Fuchs, C., private communication.
7.
7.Fujiwara, A. and Algoet, P. , “One-to-one parametrization of quantum channels,” Phys. Rev. A 59, 32903294 (1999).
8.
8.Holevo, A. S. , “The capacity of quantum channel with general signal states,” IEEE Trans. Inf. Theory 44, 269273 (1998).
9.
9.Holevo, A. S. , “Quantum coding theorems,” Russ. Math. Surveys 53, 12951331 (1999).
10.
10.King, C. , “Maximization of capacity and norms for some product channels,” J. Math. Phys. 43, 12471260 (2002).
11.
11.King, C. and Ruskai, M. B. , “Minimal Entropy of States Emerging from Noisy Quantum Channels,” IEEE Trans. Inf. Theory 47, 119 (2001).
12.
12.Lieb, E. and Thirring, W., “Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities,” in Studies in Mathematical Physics, edited by E. Lieb, B. Simon, and A. Wightman (Princeton University Press, Princeton, NJ, 1976), pp. 269–303.
13.
13.Ohya, M. , Petz, D. , and Watanabe, N. , “On capacities of quantum channels,” Prob. Math. Stats. 17, 170196 (1997).
14.
14.Schumacher, B. and Westmoreland, M. D. , “Sending classical information via noisy quantum channels,” Phys. Rev. A 56, 131138 (1997).
15.
15.Schumacher, B. and Westmoreland, M. D. , “Relative entropy in quantum information theory,” lanl:quant-ph/0004045.
16.
16.Shor, P. , “Additivity of the classical capacity of entanglement-breaking channels,” lanl:quant-ph/0201149.
17.
17.Werner, R. F. and Holevo, A. S. , “Counterexample to an additivity conjecture for output purity of quantum channels,” lanl:quant-ph/0203003.
http://aip.metastore.ingenta.com/content/aip/journal/jmp/43/10/10.1063/1.1500791
Loading
/content/aip/journal/jmp/43/10/10.1063/1.1500791
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/43/10/10.1063/1.1500791
2002-09-19
2015-05-30
Loading

Full text loading...

true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Additivity for unital qubit channels
http://aip.metastore.ingenta.com/content/aip/journal/jmp/43/10/10.1063/1.1500791
10.1063/1.1500791
SEARCH_EXPAND_ITEM