1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/45/3/10.1063/1.1643788
1.
1.Bennett, C. H. , Brassard, G. , Popescu, S. , Schumacher, B. , Smolin, J. A. , and Wootters, W. K. , “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722725 (1996);
1.Bennett, C. H. , Brassard, G. , Popescu, S. , Schumacher, B. , Smolin, J. A. , and Wootters, W. K. , Phys. Rev. Lett. 78, 2031(E) (1997).
2.
2.Bennett, C. H. , DiVincenzo, D. P. , Smolin, J. A. , and Wootters, W. K. , “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 38243851 (1996).
3.
3.Cerf, N. J. , and Adami, C. , “Negative entropy and information in quantum mechanics,” Phys. Rev. Lett. 79, 51945197 (1997);
3.Cerf, N. J. , and Adami, C. , “Quantum information theory of entanglement and measurement,” Physica D 120, 6891 (1998).
4.
4.Christandl, M., “The quantum analog to intrinsic information,” Diploma thesis, ETH Zürich, 2002 (unpublished).
5.
5.Christandl, M., Renner, R., and Wolf, S., “A property of the intrinsic mutual information,” in Proc. ISIT 2003, Yokohama, Japan, p. 258.
6.
6.Davies, E. B. , and Lewis, J. T. , “An operational approach to quantum probability,” Commun. Math. Phys. 17, 239260 (1970).
7.
7.Devetak, I. , and Winter, A. , “Distillation of secret key and entanglement from quantum states,” quant-ph/0306078, 2003;
7.Horodecki, M. and Horodecki, P., “Hashing inequality” (in preparation).
8.
8.Eisert, J. , Audenaert, K. , and Plenio, M. B. , “Remarks on entanglement measures and non-local state distinguishability,” J. Phys. A 36, 56055615 (2003).
9.
9.Fannes, M. , “A continuity property of the entropy density for spin lattice systems,” Commun. Math. Phys. 31, 291294 (1973).
10.
10.Fuchs, C. A. , and van de Graaf, J. , “Cryptographic distinguishability measures for quantum-mechanical states,” IEEE Trans. Inf. Theory 45, 12161227 (1999).
11.
11.Gisin, N. and Wolf, S., “Linking classical and quantum key agreement: is there “bound information”?,” Advances in Cryptology-CRYPTO’00, Lecture Notes in Computer Science (Springer-Verlag, Berlin, 2000), pp. 482–500.
12.
12.Hayden, P. M. , Horodecki, M. , and Terhal, B. M. , “The asymptotic entanglement cost of preparing a quantum state,” J. Phys. A 34, 68916898 (2001).
13.
13.Hayden, P. , Jozsa, R. , Petz, D. , and Winter, A. , “Structure of states which satisfy strong subadditivity of quantum entropy with equality,” Commun. Math. Phys. (to be published), quant-ph/0304007.
14.
14.Horodecki, M. , “Entanglement measures,” Quantum Inf. Comput. 1, 326 (2001).
15.
15.Horodecki, M. , Horodecki, P. , and Horodecki, R. , “Limits for entanglement measures,” Phys. Rev. Lett. 84, 20142017 (2000).
16.
16.Jozsa, R. , “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 23152323 (1994).
17.
17.Lieb, E. H. , and Ruskai, M. B. , “Proof of the strong subadditivity of quantum-mechanical entropy. With an appendix by B. Simon,” J. Math. Phys. 14, 19381941 (1973).
18.
18.Maurer, U. , and Wolf, S. , “Unconditionally secure key agreement and the intrinsic conditional information,” IEEE Trans. Inf. Theory 45, 499514 (1999).
19.
19.Nielsen, M. A., and Chuang, I. L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
20.
20.Popescu, S. , and Rohrlich, D. , “Thermodynamics and the measure of entanglement,” Phys. Rev. A 56, R3319R3321 (1997).
21.
21.Rains, E. M. , “A semidefinite program for distillable entanglement,” IEEE Trans. Inf. Theory 47, 29212933 (2001).
22.
22.Renner, R., and Wolf, S., “New bounds in secret-key agreement: The gap between formation and secrecy extraction,” Advances in Cryptology-EUROCRYPT’03, Lecture Notes in Computer Science (Springer-Verlag, Berlin, 2003), pp. 562–577.
23.
23.Rockafeller, R. T., Convex Analysis (Princeton University Press, Princeton, 1970).
24.
24.Shor, P. W. , “Equivalcne of additivity questions in quantum information theory,” Commun. Math. Phys. (to be published), quant-ph/0305035.
25.
25.Shor, P. W. , Smolin, J. A. , and Terhal, B. M. , “Nonadditivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states,” Phys. Rev. Lett. 86, 26812684 (2001).
26.
26.Tucci, R. R. , “Quantum entanglement and conditional information transmission,” quant-ph/9909041;
26.Tucci, R. R. , “Enganglement of distillation and conditional mutual information,” quant-ph/0202144.
27.
27.Uhlmann, A. , “The “transition probability” in the state space of a sp-algebra,” Rep. Math. Phys. 9, 273279 (1976).
28.
28.Vedral, V. , Plenio, M. B. , Rippin, M. A. , and Knight, P. L. , “Quantifying entanglement,” Phys. Rev. Lett. 78, 22752279 (1997).
29.
29.Vidal, G. , “Entanglement monotones,” J. Mod. Opt. 47, 355376 (2000).
30.
30.Vollbrecht, K. G. H. , and Werner, R. F. , “Entanglement measures under symmetry,” Phys. Rev. A 64, 062307 (2001).
31.
31.Yura, F. , “Entanglement cost of three-level antisymmetric states,” J. Phys. A 36, L237L242 (2003).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/45/3/10.1063/1.1643788
Loading
/content/aip/journal/jmp/45/3/10.1063/1.1643788
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/45/3/10.1063/1.1643788
2004-02-13
2015-07-30
Loading

Full text loading...

true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: “Squashed entanglement”: An additive entanglement measure
http://aip.metastore.ingenta.com/content/aip/journal/jmp/45/3/10.1063/1.1643788
10.1063/1.1643788
SEARCH_EXPAND_ITEM