1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/49/6/10.1063/1.2943685
1.
1.W. Heisenberg, Z. Phys. 43, 172 (1927).
http://dx.doi.org/10.1007/BF01397280
2.
2.H. Robertson, Phys. Rev. 34, 163 (1929).
http://dx.doi.org/10.1103/PhysRev.34.163
3.
3.I. Białynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975).
http://dx.doi.org/10.1007/BF01608825
4.
4.D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.631
5.
5.P. Gibilisco, D. Imparato, and T. Isola, J. Math. Phys. 48, 072109 (2007).
http://dx.doi.org/10.1063/1.2748210
6.
6.K. Kraus, Phys. Rev. D 35, 3070 (1987).
http://dx.doi.org/10.1103/PhysRevD.35.3070
7.
7.H. Maassen and J. Uffink, Phys. Rev. Lett. 60, 1103 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1103
8.
8.I. Damgard, S. Fehr, R. Renner, L. Salvail, and C. Schaffner, Proceedings of the CRYPTO, 2007 (unpublished), pp. 360378.
9.
9.D. DiVincenzo, M. Horodecki, D. Leung, J. Smolin, and B. Terhal, Phys. Rev. Lett. 92, 067902 (2004);
http://dx.doi.org/10.1103/PhysRevLett.92.067902
10.
10.J. Sanchez, Phys. Lett. A 173, 233 (1993).
http://dx.doi.org/10.1016/0375-9601(93)90269-6
11.
11.J. Sanchez-Ruiz, Phys. Lett. A 201, 125 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00219-S
12.
12.J. Sanchez-Ruiz, Phys. Lett. A 244, 189 (1998).
http://dx.doi.org/10.1016/S0375-9601(98)00292-8
13.
13.P. Hayden, D. Leung, P. Shor, and A. Winter, Commun. Math. Phys. 250, 371 (2004).
http://dx.doi.org/10.1007/s00220-004-1087-6
14.
14.M. Ballester and S. Wehner, Phys. Rev. A 75, 022319 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.022319
15.
15.P. Lounesto, Clifford Algebras and Spinors (Cambridge University Press, Cambridge, 2001).
16.
16.C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003).
17.
17.K. Dietz, J. Phys. A 39, 1433 (2006).
http://dx.doi.org/10.1088/0305-4470/39/6/016
18.
18.P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
http://dx.doi.org/10.1007/BF01331938
19.
19.S. Fehr (private communication).
20.
20.A. O. Morris, Q. J. Math. 18, 7 (1967).
http://dx.doi.org/10.1093/qmath/18.1.7
21.
21.A. O. Morris, Q. J. Math. 19, 289 (1968).
http://dx.doi.org/10.1093/qmath/19.1.289
22.
22.H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1980).
23.
23.D. K. Hoffman, R. C. Raffenetti, and K. Ruedenberg, J. Math. Phys. 13, 528 (1972).
http://dx.doi.org/10.1063/1.1666011
http://aip.metastore.ingenta.com/content/aip/journal/jmp/49/6/10.1063/1.2943685
Loading
/content/aip/journal/jmp/49/6/10.1063/1.2943685
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/49/6/10.1063/1.2943685
2008-06-20
2015-05-29

Abstract

Uncertainty relations provide one of the most powerful formulations of the quantum mechanical principle of complementarity. Yet, very little is known about such uncertainty relations for more than two measurements. Here, we show that sufficient unbiasedness for a set of binary observables, in the sense of mutual anticommutation, is good enough to obtain maximally strong uncertainty relations in terms of the Shannon entropy. We also prove nearly optimal relations for the collision entropy. This is the first systematic and explicit approach to finding an arbitrary number of measurements for which we obtain maximally strong uncertainty relations. Our results have immediate applications to quantum cryptography.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/49/6/1.2943685.html;jsessionid=ghsio9043itph.x-aip-live-06?itemId=/content/aip/journal/jmp/49/6/10.1063/1.2943685&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Higher entropic uncertainty relations for anti-commuting observables
http://aip.metastore.ingenta.com/content/aip/journal/jmp/49/6/10.1063/1.2943685
10.1063/1.2943685
SEARCH_EXPAND_ITEM