1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Entanglement of random subspaces via the Hastings bound
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jmp/51/4/10.1063/1.3309418
1.
1.Amosov, G. G. , Holevo, A. S. , and Werner, R. F. , “On some additivity problems in quantum information theory,” Probl. Inf. Transm. 36, 305 (2000).
2.
2.Audenaert, K. M. R. , “A sharp Fannes-type inequality for the von Neumann entropy,” J. Phys. A 40, 8127 (2007).
http://dx.doi.org/10.1088/1751-8113/40/28/S18
3.
3.Bhatia, R. , Matrix Analysis, Graduate Texts in Mathematics Vol. 169 (Springer, Berlin, 1997) (see Corollary III.2.6).
4.
4.Brandao, F. G. S. L. and Horodecki, M. , “On Hastings counterexamples to the minimum output entropy additivity conjecture,” e-print arXiv:0907.3210 [quant-ph].
5.
5.Bronk, B. V. , “Exponential ensemble for random matrices,” J. Math. Phys. 6, 228 (1965).
http://dx.doi.org/10.1063/1.1704274
6.
6.Collins, B. and Nechita, I. , “Random quantum channels. I: Graphical calculus and the Bell state phenomenon,” e-print arXiv:0905.2313 [quant-ph], Commun. Math. Phys. (to be published)
7.
7.Collins, B. and Nechita, I. , “Random quantum channels. II: Entanglement of random subspaces, Renyi entropy estimates and additivity problems,” e-print arXiv:0906.1877 [quant-ph].
8.
8.Cover, T. M. and Thomas, J. A. , Elements of Information Theory (Wiley, New York, 1991) (see Theorem 16.3.2).
9.
9.Cubitt, T. , Harrow, A. W. , Leung, D. , Montanaro, A. , and Winter, A. , “Counterexamples to additivity of minimum output p-Renyi entropy for p close to 0,” Commun. Math. Phys. 284, 281 (2008).
http://dx.doi.org/10.1007/s00220-008-0625-z
10.
10.Fannes, M. , “A continuity property of the entropy density for spin lattice systems,” Commun. Math. Phys. 31, 291 (1973).
http://dx.doi.org/10.1007/BF01646490
11.
11.Fukuda, M. , “Simplification of additivity conjecture in quantum information theory,” Quantum Inf. Process. 6, 179 (2007);
http://dx.doi.org/10.1007/s11128-007-0051-8
12.
12.Fukuda, M. , King, C. , and Moser, D. , “Comments on Hastings’ additivity counterexamples,” Commun. Math. Phys. 296, 111 (2010);
http://dx.doi.org/10.1007/s00220-010-0996-9
12.e-print arXiv:0905.3697 [quant-ph].
13.
13.Fukuda, M. and Wolf, M. M. , “Simplifying additivity problems using direct sum constructions,” J. Math. Phys. 48, 072101 (2007);
http://dx.doi.org/10.1063/1.2746128
13.e-print arXiv:0704.1092 [quant-ph].
14.
14.Hastings, M. B. , “A counterexample to additivity of minimum output entropy,” Nat. Phys. 5, 255 (2009);
http://dx.doi.org/10.1038/nphys1224
14.e-print arXiv:0809.3972v3 [quant-ph].
15.
15.Hayden, P. , Leung, D. W. , and Winter, A. , “Aspects of generic entanglement,” Commun. Math. Phys. 265, 95 (2006).
http://dx.doi.org/10.1007/s00220-006-1535-6
16.
16.Hayden, P. and Winter, A. , “Counterexamples to the maximal -norm multiplicativity conjecture for all ,” Commun. Math. Phys. 284, 263 (2008).
http://dx.doi.org/10.1007/s00220-008-0624-0
17.
17.Holevo, A. S. , “On complementary channels and the additivity problem,” Theor. Probab. Appl. 51, 133 (2005).
18.
18.Holevo, A. S. , “The capacity of the quantum channel with general signal states,” IEEE Trans. Inf. Theory 44, 269 (1998).
http://dx.doi.org/10.1109/18.651037
19.
19.King, C. , Matsumoto, K. , Nathanson, M. , and Ruskai, M. B. , “Properties of conjugate channels with applications to additivity and multiplicativity,” Markov Processes Relat. Fields 13, 391 (2007).
20.
20.King, C. and Ruskai, M. B. , “Minimal entropy of states emerging from noisy quantum channels,” IEEE Trans. Inf. Theory 47, 192 (2001).
http://dx.doi.org/10.1109/18.904522
21.
21.Lloyd, S. and Pagels, H. , “Complexity as thermodynamic depth,” Ann. Phys. 188, 186 (1988).
http://dx.doi.org/10.1016/0003-4916(88)90094-2
22.
22.Page, D. N. , “Average entropy of a subsystem,” Phys. Rev. Lett. 71, 1291 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1291
23.
23.Ruskai, M. B. , A comment at the July 2009 workshop “Thematic Program on Mathematics in Quantum Information” at the Fields Institute.
24.
24.Sánchez-Ruiz, J. , “Simple proof of Pages conjecture on the average entropy of a subsystem,” Phys. Rev. E 52, 5653 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.5653
25.
25.Schumacher, B. and Westmoreland, M. D. , “Sending classical information via noisy quantum channels,” Phys. Rev. A 56, 131 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.131
26.
26.Sen, S. , “Average entropy of a quantum subsystem,” Phys. Rev. Lett. 77, 1 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1
27.
27.Shor, P. W. , “Equivalence of additivity questions in quantum information theory,” Commun. Math. Phys. 246, 453 (2004).
http://dx.doi.org/10.1007/s00220-003-0981-7
28.
28.Werner, R. F. and Holevo, A. S. , “Counterexample to an additivity conjecture for output purity of quantum channels,” J. Math. Phys. 43, 4353 (2002).
http://dx.doi.org/10.1063/1.1498491
29.
29.Życzkowski, K. and Bengtsson, I. , “On duality between quantum maps and quantum states,” Open Syst. Inf. Dyn. 11, 3 (2004).
http://dx.doi.org/10.1023/B:OPSY.0000024753.05661.c2
30.
30.Zyczkowski, K. and Sommers, H. -J. , “Induced measures in the space of mixed quantum states,” J. Phys. A 34, 7111 (2001).
http://dx.doi.org/10.1088/0305-4470/34/35/335
http://aip.metastore.ingenta.com/content/aip/journal/jmp/51/4/10.1063/1.3309418
Loading
/content/aip/journal/jmp/51/4/10.1063/1.3309418
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/51/4/10.1063/1.3309418
2010-04-05
2014-12-23

Abstract

Recently, Hastings [“A counterexample to additivity of minimum output entropy,” Nat. Phys.5, 255 (2009); e-print arXiv:0809.3972v3] proved the existence of random unitary channels, which violate the additivity conjecture. In this paper, we use Hastings’ method to derive new bounds for the entanglement of random subspaces of bipartite systems. As an application we use these bounds to prove the existence of nonunital channels, which violate additivity of minimal output entropy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/51/4/1.3309418.html;jsessionid=a6r1tb08napl3.x-aip-live-06?itemId=/content/aip/journal/jmp/51/4/10.1063/1.3309418&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Entanglement of random subspaces via the Hastings bound
http://aip.metastore.ingenta.com/content/aip/journal/jmp/51/4/10.1063/1.3309418
10.1063/1.3309418
SEARCH_EXPAND_ITEM