Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/52/4/10.1063/1.3580272
1.
1. M. P. Barnett, J. F. Capitani, J. Von Zur Gathen, and J. Gerhard, Int. J. Quantum Chem. 100, 80 (2004);
http://dx.doi.org/10.1002/qua.20097
1.W. P. Hong, Phys. Lett. A 361, 520 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.11.021
2.
2. B. Tian and Y. T. Gao, Phys. Lett. A 340, 243 (2005);
http://dx.doi.org/10.1016/j.physleta.2005.03.035
2.B. Tian and Y. T. Gao, Phys. Lett. A 362, 283 (2007);
http://dx.doi.org/10.1016/j.physleta.2006.10.094
2.B. Tian and Y. T. Gao, Phys. Lett. A 349, 314 (2006).
http://dx.doi.org/10.1016/j.physleta.2005.09.040
3.
3. B. Tian and Y. T. Gao, Phys. Lett. A 340, 449 (2005);
http://dx.doi.org/10.1016/j.physleta.2005.03.082
3.B. Tian and Y. T. Gao, Phys. Lett. A 342, 228 (2005);
3.B. Tian and Y. T. Gao, Phys. Lett. A 359, 241 (2006).
4.
4. B. Tian, W. R. Shan, C. Y. Zhang, G. M. Wei, and Y. T. Gao, Eur. Phys. J. B 47, 329 (2005);
http://dx.doi.org/10.1140/epjb/e2005-00348-3
4.B. Tian, G. M. Wei, C. Y. Zhang, W. R. Shan, and Y. T. Gao, Phys. Lett. A 356, 8 (2006).
http://dx.doi.org/10.1016/j.physleta.2006.03.080
5.
5. B. Tian, Y. T. Gao, and H. W. Zhu, Phys. Lett. A 366, 223 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.02.098
6.
6. B. Tian and Y. T. Gao, Eur. Phys. J. D 33, 59 (2005);
http://dx.doi.org/10.1140/epjd/e2005-00036-6
6.Y. T. Gao and B. Tian, Phys. Lett. A 361, 523 (2007);
http://dx.doi.org/10.1016/j.physleta.2006.11.019
6.Y. T. Gao and B. Tian, Europhys. Lett. 77, 15001 (2007).
http://dx.doi.org/10.1209/0295-5075/77/15001
7.
7. T. Xu, H. Q. Zhang, Y. X. Zhang, J. Li, Q. Feng, and B. Tian, J. Math. Phys. 49, 013501 (2008);
http://dx.doi.org/10.1063/1.2825247
7.T. Xu and B. Tian, J. Math. Phys. 51, 033504 (2010).
http://dx.doi.org/10.1063/1.3301040
8.
8. X. , H. W. Zhu, X. H. Meng, Z. C. Yang, and B. Tian, J. Math. Anal. Appl. 336, 1305 (2007);
http://dx.doi.org/10.1016/j.jmaa.2007.03.017
8.X. , H. W. Zhu, Z. Z. Yao, X. H. Meng, C. Zhang, C. Y. Zhang, and B. Tian, Ann. Phys. (N. Y.) 323, 1947 (2008);
http://dx.doi.org/10.1016/j.aop.2007.10.007
8.X. , B. Tian, K. Sun, and P. Wang, J. Math. Phys. 51, 113506 (2010).
http://dx.doi.org/10.1063/1.3504168
9.
9. Z. Y. Sun, Y. T. Gao, X. Yu, W. J. Liu, and Y. Liu, Phys. Rev. E 80, 066608 (2009);
http://dx.doi.org/10.1103/PhysRevE.80.066608
9.Z. Y. Sun, Y. T. Gao, X. Yu, X. H. Meng, and Y. Liu, Wave Motion 46, 511 (2009);
http://dx.doi.org/10.1016/j.wavemoti.2009.06.014
9.Z. Y. Sun, Y. T. Gao, X. Yu, and Y. Liu, Colloids Surf., A 366, 1 (2010).
http://dx.doi.org/10.1016/j.colsurfa.2010.04.038
10.
10. L. Wang, Y. T. Gao, X. L. Gai, and Z. Y. Sun, Phys. Scr. 80, 065017 (2009);
http://dx.doi.org/10.1088/0031-8949/80/06/065017
10.L. Wang, Y. T. Gao, and F. H. Qi, J. Math. Anal. Appl. 372, 110 (2010);
http://dx.doi.org/10.1016/j.jmaa.2010.06.016
10.L. Wang, Y. T. Gao, and X. L. Gai, Z. Naturforsch. A 65, 818 (2010) (http://www.znaturforsch.com/aa/v65a/65a0818.pdf).
11.
11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2002).
12.
12. L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation (Cambridge University Press, Cambridge, 2003).
13.
13. X. B. Hu and H. W. Tam, J. Phys. A 34, 10577 (2001);
http://dx.doi.org/10.1088/0305-4470/34/48/321
13.C. X. Li and X. B. Hu, Phys. Lett. A 329, 193 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.06.052
14.
14. X. B. Hu, C. X. Li, J. J. Nimmo, and G. F. Yu, J. Phys. A 38, 195 (2005);
http://dx.doi.org/10.1088/0305-4470/38/1/014
14.X. B. Hu and P. A. Clarkson, J. Nonlinear Math. Phys. 9, 75 (2002).
http://dx.doi.org/10.2991/jnmp.2002.9.s1.7
15.
15. X. B. Hu and R. K. Bulloughz, J. Phys. A 30, 3635 (1997).
http://dx.doi.org/10.1088/0305-4470/30/10/034
16.
16. T. Tokihiro, D. Takahashi, J. Matsukidaira, and J. Satsuma, Phys. Rev. Lett. 76, 3247 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3247
17.
17. Y. Kominis, T. Bountis, and K. Hizanidis, Phys. Rev. E 81, 066601 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.066601
18.
18. B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).
http://dx.doi.org/10.1126/science.282.5394.1686
19.
19. A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2353
20.
20. S. L. Musher, A. M. Rubenchikb, and V. E. Zakharov, Phys. Rep. 252, 177 (1995).
http://dx.doi.org/10.1016/0370-1573(94)00071-A
21.
21. V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, Zh. Eksp. Teor. Fiz. Pis'ma Red. 19, 249 (1974)
21.V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, [JETP Lett. 19, 151 (1974)] (http://www.jetpletters.ac.ru/ps/1774/article_26980.pdf).
22.
22. G. Picard and T. W. Jphnston, Phys. Rev. Lett. 48, 1610 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.1610
23.
23. E. Valeo, C. Oberman, and F. W. Perkins, Phys. Rev. Lett. 28, 340 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.340
24.
24. M. F. Dimentberg, Phys. Rev. E 65, 036204 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036204
25.
25. A. Naess, M. F. Dimentberg, and O. Gaidai, Phys. Rev. E 78, 021126 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.021126
26.
26. Y. Itoh, Ann. Inst. Stat. Math. 25, 635 (1973);
http://dx.doi.org/10.1007/BF02479405
26.Y. Itoh, Prog. Theor. Phys. 78, 507 (1987).
http://dx.doi.org/10.1143/PTP.78.507
27.
27. U. Dobramysl and U. C. Täuber, Phys. Rev. Lett. 101, 258102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.258102
28.
28. B. Batiha, M. S. M. Noorani, and I. Hashim, Comput. Math. Appl. 54, 903 (2007).
http://dx.doi.org/10.1016/j.camwa.2006.12.058
29.
29. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004).
30.
30. C. Gilson, F. Lambert, J. J. Nimmo, and R. Willox, Proc. R. Soc. London, Ser. A 452, 223 (1996).
http://dx.doi.org/10.1098/rspa.1996.0013
31.
31. F. Lambert, I. Loris, J. Springael, and R. Willox, J. Phys. A 27, 5325 (1994);
http://dx.doi.org/10.1088/0305-4470/27/15/028
31.F. Lambert and J. Springael, Chaos, Solitons Fractals 12, 2821 (2001);
http://dx.doi.org/10.1016/S0960-0779(01)00096-0
31.F. Lambert and J. Springael, Acta Appl. Math. 102, 147 (2008).
http://dx.doi.org/10.1007/s10440-008-9209-3
32.
32. Y. Jiang, B. Tian, W. J. Liu, M. Li, P. Wang, and K. Sun, J. Math. Phys. 51, 093519 (2010).
http://dx.doi.org/10.1063/1.3489865
http://aip.metastore.ingenta.com/content/aip/journal/jmp/52/4/10.1063/1.3580272
Loading
/content/aip/journal/jmp/52/4/10.1063/1.3580272
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/52/4/10.1063/1.3580272
2011-04-29
2016-05-01

Abstract

Symbolically investigated in this paper is the extended Lotka–Volterra (ELV) equation, which can govern the kinetics of the discrete peaks of the weak Langmuir turbulence in plasmas without the linear damping and random noise. Binary Bell polynomials are applied to the bilinearization of the discrete system. Bilinear Bäcklund transformation of the ELV equation is constructed. N-soliton solution in terms of the extended Casorati determinant is also presented and verified. Propagation and interaction behaviors of the Langmuir turbulence are analyzed. It is demonstrated that the number of the interactingLangmuir waves can influence the soliton velocity and amplitude as well as the collision phase shift. Graphic illustrations of the solitonic collisions show that the repulsion effects and nonlinear interactions are also associated with the number of the interactingLangmuir waves.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/52/4/1.3580272.html;jsessionid=nL1dgnc4TGAdKbgQQjY1CTsr.x-aip-live-02?itemId=/content/aip/journal/jmp/52/4/10.1063/1.3580272&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd