Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jmp/53/3/10.1063/1.3688337
1.
1. Akiyama, S. and Lee, J.-Y. , “Algorithm for determining pure pointedness of self-affine tilings,” Adv. Math. 226, 28552883 (2011);
http://dx.doi.org/10.1016/j.aim.2010.07.019
1.e-print arXiv:1003.2898.
2.
2. Allouche, J.-P. and Shallit, J. , Automatic Sequences: Theory, Applications, Generalizations (Cambridge University Press, Cambridge, England, 2003).
3.
3. Anderson, J. E. and Putnam, I. F. , “Topological invariants for substitution tilings and their associated C*-algebras,” Ergodic Theory Dyn. Syst. 18, 509537 (1998).
http://dx.doi.org/10.1017/S0143385798100457
4.
4. Baake, M. , “Diffraction of weighted lattice subsets,” Can. Math. Bull. 45, 483498 (2002);
http://dx.doi.org/10.4153/CMB-2002-050-2
5.
5. Baake, M. and Grimm, U. , “The singular continuous diffraction measure of the Thue-Morse chain,” J. Phys. A: Math. Theor. 41, 422001 (2008);
http://dx.doi.org/10.1088/1751-8113/41/42/422001
5.e-print arXiv:0809.0580.
6.
6. Baake, M. and Grimm, U. , “Surprises in aperiodic diffraction,” J. Phys.: Conf. Ser. 226, 012023 (2010);
http://dx.doi.org/10.1088/1742-6596/226/1/012023
6.e-print arXiv:0909.5605.
7.
7. Baake, M. and Grimm, U. , “Diffraction of limit periodic point sets,” Philos. Mag. 91, 26612670 (2011);
http://dx.doi.org/10.1080/14786435.2010.508447
7.e-print arXiv:1007.0707.
8.
8. Baake, M. and Grimm, U. , “Kinematic diffraction from a mathematical viewpoint,” Z. Kristallogr. 226, 711725 (2011);
http://dx.doi.org/10.1524/zkri.2011.1389
8.e-print arXiv:1105.0095.
9.
9. Baake, M. and Grimm, U. , “Squirals and beyond: Substitution tilings with singular continuous spectrum” (unpublished).
10.
10. Baake, M. , Hermisson, J. , and Pleasants, P. A. B. , “The torus parameterization of quasiperiodic LI classes,” J. Phys. A 30, 30293056 (1997);
http://dx.doi.org/10.1088/0305-4470/30/9/016
10.e-print arXiv:mp_arc/02-168.
11.
11. Baake, M. , Lau, E. , and Paskunas, V. , “A note on the dynamical zeta function of general toral endomorphisms,” Monatsh. Math. 161, 3342 (2010);
http://dx.doi.org/10.1007/s00605-009-0118-y
11.e-print arXiv:0810.1855.
12.
12. Baake, M. and Lenz, D. , “Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra,” Ergodic Theory Dyn. Syst. 24, 18671893 (2004);
http://dx.doi.org/10.1017/S0143385704000318
13.
13. Baake, M. , Lenz, D. , and Moody, R. V. , “Characterization of model sets by dynamical systems,” Ergodic Theory Dyn. Syst. 27, 341382 (2007);
http://dx.doi.org/10.1017/S0143385706000800
14.
14. Directions in Mathematical Quasicrystals, CRM Monograph Series Vol. 13, edited by Baake, M. and Moody, R. V. (American Mathematical Society, Providence, RI, 2000).
15.
15. Baake, M. and Moody, R. V. , “Weighted Dirac combs with pure point diffraction,” J. Reine. Angew. Math. 573, 6194 (2004);
http://dx.doi.org/10.1515/crll.2004.064
16.
16. Baake, M. , Moody, R. V. , and Schlottmann, M. , “Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces,” J. Phys. A 31, 57555765 (1998);
http://dx.doi.org/10.1088/0305-4470/31/27/006
17.
17. Barge, M. and Olimb, C. , “Asymptotic structure in substitution tiling spaces,” preprint; e-print arXiv:1101.4902.
18.
18. Barge, M. and Sadun, L. , “Quotient cohomology for tiling spaces,” N. Y. J. Math. 17, 579599; e-print arXiv:1101.3369.
19.
19. Bauer, H. , Measure and Integration Theory (de Gruyter, Berlin, 2001).
20.
20. Bellissard, J. , Herrmann, D. J. L. , and Zarrouati, M. , “Hulls of aperiodic solids and gap labeling theorems,” in Ref. 14, pp. 207258.
21.
21. Berg, C. and Forst, G. , Potential Theory on Locally Compact Abelian Groups (Springer-Verlag, Berlin, 1975).
22.
22. Cowley, J. M. , Diffraction Physics, 3rd ed. (North-Holland, Amsterdam, 1995).
23.
23. Damanik, D. , “Gordon-type arguments in the spectral theory of one-dimensional quasicrystals,” in Ref. 14, pp. 277305.
24.
24. Dekking, F. M. , “The spectrum of dynamical systems arising from substitutions of constant length,” Z. Wahrscheinlichkeitstheor. Verwandte Geb. 41, 221239 (1978).
http://dx.doi.org/10.1007/BF00534241
25.
25. van Enter, A. C. D. and Miȩkisz, J. , “How should one define a weak crystal?,” J. Stat. Phys. 66, 11471153 (1992).
http://dx.doi.org/10.1007/BF01055722
26.
26. Frank, N. P. , “Multi-dimensional constant-length substitution sequences,” Topol. Appl. 152, 4469 (2005).
http://dx.doi.org/10.1016/j.topol.2004.08.014
27.
27. Frank, N. P. , “Spectral theory of bijective substitution sequences,” MFO Reports 6, 752756 (2009).
28.
28. Frettlöh, D. and Sing, B. , “Computing modular coincidences for substitution tilings and point sets,” Discrete Comput. Geom. 37, 381407 (2007);
http://dx.doi.org/10.1007/s00454-006-1280-9
29.
29. Gähler, F. and Maloney, G. R. , “Cohomology of one-dimensional mixed substitution tiling spaces,” preprint;
29.e-print arXiv:1112.1475.
30.
30. Hof, A. , “On diffraction by aperiodic structures,” Commun. Math. Phys. 169, 2543 (1995).
http://dx.doi.org/10.1007/BF02101595
31.
31. Hutchinson, J. E. , “Fractals and self-similarity,” Indiana Univ. Math. J. 30, 713743 (1981).
http://dx.doi.org/10.1512/iumj.1981.30.30055
32.
32. Kakutani, S. , “Strictly ergodic symbolic dynamical systems,” in Proceedings of 6th Berkeley Symposium on Math. Statistics and Probability, edited by L. M. LeCam, J. Neyman, and E. L. Scott (University of California Press, Berkeley, 1972), pp. 319326.
33.
33. Katznelson, Y. , An Introduction to Harmonic Analysis, 3rd ed. (Cambridge University Press, New York, 2004).
34.
34. Keane, M. , “Generalized Morse sequences,” Z. Wahrscheinlichkeitstheor Verwandte Geb. 10, 335353 (1968).
http://dx.doi.org/10.1007/BF00531855
35.
35. Lee, J.-Y. , “Substitution Delone sets with pure point spectrum are inter model sets,” J. Geom. Phys. 57, 22632285 (2007);
http://dx.doi.org/10.1016/j.geomphys.2007.07.003
36.
36. Lee, J.-Y. and Moody, R. V. , “Lattice substitution systems and model sets,” Discrete Comput. Geom. 25, 173201 (2001);
http://dx.doi.org/10.1007/s004540010083
37.
37. Lee, J.-Y. , Moody, R. V. , and Solomyak, B. , “Pure point dynamical and diffraction spectra,” Ann. Henry. Poincare 3, 10031018;
http://dx.doi.org/10.1007/s00023-002-8646-1
37.e-print arXiv:0910.4809.
38.
38. Lee, J.-Y. , Moody, R. V. , and Solomyak, B. , “Consequences of pure point diffraction spectra for multiset substitution systems,” Discrete Comput. Geom. 29, 525560 (2003);
http://dx.doi.org/10.1007/s00454-003-0781-z
38.e-print arXiv:0910.4450.
39.
39. Lenz, D. and Stollmann, P. , “Generic sets in spaces of measures and generic singular continuous spectrum for Delone Hamiltonians,” Duke Math. J. 131, 203217 (2006);
http://dx.doi.org/10.1215/S0012-7094-06-13121-6
40.
40. Mahler, K. , “The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. Part II: On the translation properties of a simple class of arithmetical functions,” J. Math. Massachusetts 6, 158163 (1927).
41.
41. Moody, R. V. , “Meyer sets and their duals,” in The Mathematics of Long-Range Aperiodic Order, NATO ASI Series C 489, edited by Moody R. V. (Kluwer, Dordrecht, 1997), pp. 403441.
42.
42. Moody, R. V. , “Model sets: A Survey,” in From Quasicrystals to More Complex Systems, edited by Axel F. , Dénoyer, F. , and Gazeau, J. P. (EDP Sciences, Les Ulis, and Springer-Verlag, Berlin, 2000), pp. 145166;
43.
43. Nadkarni, M. G. , Basic Ergodic Theory, 2nd ed. (Birkhäuser, Basel, 1995).
44.
44. Pinsky, M. A. , Introduction to Fourier Analysis and Wavelets (Brooks/Cole, Pacific Grove, CA, 2002).
45.
45. Queffélec, M. , Substitution Dynamical Systems–Spectral Analysis, LNM 1294, 2nd ed. (Springer-Verlag, Berlin, 2010).
46.
46. Reed, M. and Simon, B. , Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd ed. (Academic, San Diego, CA, 1980).
47.
47. Rudin, W. , Fourier Analysis on Groups (Wiley, New York, 1990).
48.
48. Ruelle, D. , Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval, CRM Monograph Series, Vol. 4 (American Mathematical Society, Providence, RI, 1994).
49.
49. Sadun, L. , Topology of Tiling Spaces (American Mathematical Society, Providence, RI, 2008).
50.
50. Schlottmann, M. , “Generalised model sets and dynamical systems,” in Ref. 14, pp. 143159.
51.
51. Simon, B. , “Operators with singular continuous spectrum. I. General operators,” Ann. Math. (2) 141, 131145 (1995).
http://dx.doi.org/10.2307/2118629
52.
52. Walters, P. , An Introduction to Ergodic Theory (Springer, New York, 2000).
53.
53. Wiener, N. , “The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. Part I: The spectrum of an array,” J. Math. Massachusetts 6, 145157 (1927).
54.
54. Withers, R. L. , “Disorder, structured diffuse scattering and the transmission electron microscope,” Z. Kristallogr. 220, 10271034 (2005).
http://dx.doi.org/10.1524/zkri.2005.220.12.1027
55.
55. Zaks, M. A. , “On the dimensions of the spectral measure of symmetric binary substitutions,” J. Phys. A 35, 58335841 (2002).
http://dx.doi.org/10.1088/0305-4470/35/28/304
56.
56. Zygmund, A. , Trigonometric Series, 3rd ed. (Cambridge University Press, Cambridge, England, 2002).
http://aip.metastore.ingenta.com/content/aip/journal/jmp/53/3/10.1063/1.3688337
Loading
/content/aip/journal/jmp/53/3/10.1063/1.3688337
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jmp/53/3/10.1063/1.3688337
2012-03-01
2016-12-04

Abstract

The classic middle-thirds Cantor set leads to a singular continuous measure via a distribution function that is known as the Devil's staircase. The support of the Cantor measure is a set of zero Lebesgue measure. Here, we discuss a class of singular continuous measures that emerge in mathematical diffraction theory and lead to somewhat similar distribution functions, yet with significant differences. Various properties of these measures are derived. In particular, these measures have supports of full Lebesgue measure and possess strictly increasing distribution functions. In this sense, they mark the opposite end of what is possible for singular continuous measures. For each member of the family, the underlying dynamical system possesses a topological factor with maximal pure point spectrum, and a close relation to a solenoid, which is the Kronecker factor of the system. The inflation action on the continuous hull is sufficiently explicit to permit the calculation of the corresponding dynamical zeta functions. This is achieved as a corollary of analysing the Anderson-Putnam complex for the determination of the cohomological invariants of the corresponding tiling spaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jmp/53/3/1.3688337.html;jsessionid=x35aoVKfb7l99qWSL9amgjHh.x-aip-live-06?itemId=/content/aip/journal/jmp/53/3/10.1063/1.3688337&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jmp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jmp.aip.org/53/3/10.1063/1.3688337&pageURL=http://scitation.aip.org/content/aip/journal/jmp/53/3/10.1063/1.3688337'
Right1,Right2,Right3,